Sparsity Methods for Systems and Control Maximum Hands-off Control

Masaaki Nagahara¹

¹The University of Kitakyushu nagahara@ieee.org

Table of Contents

- \bigcirc L^0 norm and sparse control
- 2 A simple example of maximum hands-off control
- 3 General formulation of maximum hands-off control
- 4 Conclusion

Table of Contents

- \bigcirc L^0 norm and sparse control
- 2 A simple example of maximum hands-off control
- General formulation of maximum hands-off control
- 4 Conclusion

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0,T]$
- *L*⁰ norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- *L*⁰ norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- L^0 norm: the total length of time durations on which the signal takes nonzero values.

• The support of a function u(t), $t \in [0, T]$:

$$supp(u) \triangleq \{t \in [0, T] : u(t) \neq 0\}.$$

$$||u||_0 \triangleq \mu(\operatorname{supp}(u)),$$

- $\mu(S)$ is the Lebesgue measure (i.e. the length) of a subset $S \subset [0, T]$.
- L^0 norm: the total length of time durations on which the signal takes nonzero values.

Example: L^0 norm of a function

• The L^0 norm

$$||u||_0 = \mu(\text{supp}(u)) = t_1 + (T - t_2) = T - (t_2 - t_1).$$

• If $||u||_0$ is much smaller than the total length T (i.e., $||u||_0 \ll T$), then the signal is said to be sparse.

Example: L^0 norm of a function

• The L^0 norm

$$||u||_0 = \mu(\text{supp}(u)) = t_1 + (T - t_2) = T - (t_2 - t_1).$$

• If $||u||_0$ is much smaller than the total length T (i.e., $||u||_0 \ll T$), then the signal is said to be sparse.

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations

- Let us consider the sparse control signal u(t), $t \in [0, T]$.
- Actuators as electric motors need energy to generate power.
- If the control u(t) is sparse, we can stop energy supply to the actuator over the time interval $[t_1, t_2]$.
- Such a control is called a hands-off control.
 - This is also known as coasting.
- We can also reduce CO or CO2 emissions, noise, and vibrations.

Examples of hands-off control

- Start-stop system in vehicles
- Hybrid cars
- Electric locomotives

- 1. https://www.carprousa.com/Understanding-Vehicle-StartStop-Systems/a/3
- 2. https://en.wikipedia.org/wiki/Hybrid vehicle
- 3. https://en.wikipedia.org/wiki/Electric_locomotive

Table of Contents

- \bigcirc L^0 norm and sparse control
- ② A simple example of maximum hands-off control
- General formulation of maximum hands-off control
- 4 Conclusion

• Control objective: Given T > 0, find F(t), $0 \le t \le T$, such that

$$r(T) = 0$$
, $\dot{r}(T) = 0$.

- System model: $m\ddot{r}(t) = F(t)$ (Newton's second law of motion)
- State variable:

$$x(t) \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix} \Rightarrow \dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix} u(t).$$

• Control objective: Given T > 0, find F(t), $0 \le t \le T$, such that

$$r(T) = 0$$
, $\dot{r}(T) = 0$.

- System model: $m\ddot{r}(t) = F(t)$ (Newton's second law of motion)
- State variable:

$$x(t) \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix} \Rightarrow \dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix} u(t)$$

• Control objective: Given T > 0, find F(t), $0 \le t \le T$, such that

$$r(T) = 0$$
, $\dot{r}(T) = 0$.

- System model: $m\ddot{r}(t) = F(t)$ (Newton's second law of motion)
- State variable:

$$x(t) \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix} \Rightarrow \dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix} u(t).$$

• Control objective: Given T > 0, find F(t), $0 \le t \le T$, such that

$$r(T) = 0$$
, $\dot{r}(T) = 0$.

- System model: $m\ddot{r}(t) = F(t)$ (Newton's second law of motion)
- State variable:

$$x(t) \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix} \Rightarrow \dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix} u(t).$$

Maximum hands-off control

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For simplicity, we assume m = 1, $\xi_1 = 1$, $\xi_2 = 1$, $U_{\text{max}} = 1$.

Maximum hands-off control

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For simplicity, we assume m = 1, $\xi_1 = 1$, $\xi_2 = 1$, $U_{\text{max}} = 1$.

Feasible control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^T$ that satisfies $|u(t)| \le 1$, for all $t \in [0, T]$.

Maximum hands-off control

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

For simplicity, we assume m = 1, $\xi_1 = 1$, $\xi_2 = 1$, $U_{\text{max}} = 1$.

Feasible control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^T$ that satisfies $|u(t)| \le 1$, for all $t \in [0, T]$.

Maximum hands-off control problem

Find a feasible control that minimizes the L^0 norm of u:

$$J_0(u) = \mu(\text{supp}(u)) = \int_0^T |u(t)|^0 dt$$
 (the length of the support)

L^0 norm and L^1 norm

• L^0 norm:

$$J_0(u) = \mu(\text{supp}(u)) = \int_0^T |u(t)|^0 dt$$

• L^1 norm

$$J_1(u) = \int_0^T |u(t)| dt,$$

L^0 norm and L^1 norm

• L^0 norm:

$$J_0(u) = \mu(\text{supp}(u)) = \int_0^T |u(t)|^0 dt$$

• L^1 norm

$$J_1(u) = \int_0^T |u(t)| dt,$$

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{\top}$, that satisfies $|u(t)| \le 1$, $\forall t \in [0, T]$, and that minimizes the L^1 norm of u:

$$J_1(u) = \int_0^T |u(t)| dt.$$

- Also known as fuel optimal control.
- A convex optimization problem.
- A closed-form solution is obtained.

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{\top}$, that satisfies $|u(t)| \le 1$, $\forall t \in [0, T]$, and that minimizes the L^1 norm of u:

$$J_1(u) = \int_0^T |u(t)| dt.$$

- Also known as fuel optimal control.
- A convex optimization problem.
- A closed-form solution is obtained.

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{\top}$, that satisfies $|u(t)| \le 1$, $\forall t \in [0, T]$, and that minimizes the L^1 norm of u:

$$J_1(u) = \int_0^T |u(t)| dt.$$

- Also known as fuel optimal control.
- A convex optimization problem.
- A closed-form solution is obtained.

Control system (rocket)

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

L^1 -optimal control

Fix T > 0. Find a feasible control u(t), $t \in [0, T]$ that drives the state from x(0) to $x(T) = [0, 0]^{T}$, that satisfies $|u(t)| \le 1$, $\forall t \in [0, T]$, and that minimizes the L^1 norm of u:

$$J_1(u) = \int_0^T |u(t)| dt.$$

- Also known as fuel optimal control.
- A convex optimization problem.
- A closed-form solution is obtained.

A simple example

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

- $u^*(t) \equiv 0$ over $[3 \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
- $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)
- In fact, it is the sparsest (i.e., maximum hands-off control).

A simple example

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

- $u^*(t) \equiv 0 \text{ over } [3 \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
- $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)
- In fact, it is the sparsest (i.e., maximum hands-off control).

A simple example

 L^1 -optimal control $u^*(t)$ and trajectory $x^*(t)$ [Athans and Falb, 1966]

- $u^*(t) \equiv 0 \text{ over } [3 \sqrt{10}/2, 3 + \sqrt{10}/2] \approx [1.4, 4.6]$
- $u^*(t)$ is sparse ($||u^*||_0 = |\operatorname{supp}(u^*)| \approx 1.84 < 5 = T$)
- In fact, it is the sparsest (i.e., maximum hands-off control).

Table of Contents

- \bigcirc L^0 norm and sparse control
- 2 A simple example of maximum hands-off control
- 3 General formulation of maximum hands-off control
- 4 Conclusion

L^0 -optimal control problem

L^0 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_0(u) = ||u||_0 = \int_0^T |u(t)|^0 dt$$

subject to

$$x(T) = 0$$
,

and

$$||u||_{\infty} \leq 1.$$

L^0 -optimal control problem

L^0 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_0(u) = ||u||_0 = \int_0^T |u(t)|^0 dt$$

subject to

$$x(T) = 0$$
,

and

$$||u||_{\infty} \leq 1.$$

This is difficult!

L^1 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_1(u) = ||u||_1 = \int_0^T |u(t)|dt$$

subject to

$$x(T) = 0$$
,

and

$$||u||_{\infty} \leq 1.$$

L^1 -optimal control problem

For the linear time-invariant system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

find a control $\{u(t): t \in [0, T]\}$ with T > 0 that minimizes

$$J_1(u) = ||u||_1 = \int_0^T |u(t)|dt$$

subject to

$$x(T) = 0$$
,

and

$$||u||_{\infty} \leq 1.$$

This is easy!

Bang-off-bang control

Theorem

If (A, b) is controllable and A is nonsingular, then the L^1 optimal control u(t) takes ± 1 or 0 for almost all $t \in [0, T]$ (if it exists).

A control that takes ±1 or 0 is called a bang-off-bang control.

Bang-off-bang control

Theorem

If (A, b) is controllable and A is nonsingular, then the L^1 optimal control u(t) takes ± 1 or 0 for almost all $t \in [0, T]$ (if it exists).

A control that takes ±1 or 0 is called a bang-off-bang control.

Equivalence between L^0 and L^1 optimal controls

Theorem

Assume that there exists an L^1 -optimal control that is bang-off-bang. Then it is also L^0 optimal.

Theorem

Assume that there exists at least one L^1 -optimal control. Assume also that (A, \mathbf{b}) is controllable and A is non-singular. Then there exists at least one L^0 -optimal control, and the set of L^0 -optimal controls is equivalent to the set of L^1 -optimal controls.

Equivalence between L^0 and L^1 optimal controls

Theorem

Assume that there exists an L^1 -optimal control that is bang-off-bang. Then it is also L^0 optimal.

Theorem

Assume that there exists at least one L^1 -optimal control. Assume also that (A, \mathbf{b}) is controllable and A is non-singular. Then there exists at least one L^0 -optimal control, and the set of L^0 -optimal controls is equivalent to the set of L^1 -optimal controls.

Conclusion

- Maximum hands-off control is described as L^0 -optimal control.
- Under the assumption of non-singularity, that is, (A, b) is controllable and A is nonsingular, L^0 -optimal control is equivalent to L^1 -optimal control.
- Maximum hands-off control is a ternary signal that takes values of ±1 and 0. Such a ternary control is called a bang-off-bang control.