# Sparsity Methods for Systems and Control Dynamical Systems and Optimal Control

Masaaki Nagahara<sup>1</sup>

<sup>1</sup>The University of Kitakyushu nagahara@ieee.org

## **Table of Contents**

- Dynamical system
- Optimal Control
- Minimum-time Control
- Minimum-time Control of Rocket
- Conclusion

## **Table of Contents**

- Dynamical system
- Optimal Control
- Minimum-time Control
- Minimum-time Control of Rocket
- Conclusion

- A dynamical system is a moving system.
- industrial products
   vehicles, airplanes, motors, electric circuits, etc,
- movement of planetary, change of weather, ant swarm, cell movement, fluctuations in stock prices, and spread of virus
- In Part II, we will learn sparsity methods for dynamical systems







- A dynamical system is a moving system.
- industrial products
  - vehicles, airplanes, motors, electric circuits, etc,
- movement of planetary, change of weather, ant swarm, cell movement, fluctuations in stock prices, and spread of virus
- In Part II, we will learn sparsity methods for dynamical systems







- A dynamical system is a moving system.
- industrial products
  - vehicles, airplanes, motors, electric circuits, etc,
- movement of planetary, change of weather, ant swarm, cell movement, fluctuations in stock prices, and spread of virus
- In Part II, we will learn sparsity methods for dynamical systems







- A dynamical system is a moving system.
- industrial products
  - vehicles, airplanes, motors, electric circuits, etc,
- movement of planetary, change of weather, ant swarm, cell movement, fluctuations in stock prices, and spread of virus.
- In Part II, we will learn sparsity methods for dynamical systems







- A dynamical system is a moving system.
- industrial products
  - vehicles, airplanes, motors, electric circuits, etc,
- movement of planetary, change of weather, ant swarm, cell movement, fluctuations in stock prices, and spread of virus.
- In Part II, we will learn sparsity methods for dynamical systems.







#### A rocket in the outer space

- No friction nor gravity acts
- The mass of the rocket is *m* [kg]
- The position and velocity are r(t) [m] and  $v(t) = \dot{r}(t)$  [m/s]
- The thrust force is F(t)



- A rocket in the outer space
  - No friction nor gravity acts
- The mass of the rocket is *m* [kg
- The position and velocity are r(t) [m] and  $v(t) = \dot{r}(t)$  [m/s]
- The thrust force is F(t)



- A rocket in the outer space
  - No friction nor gravity acts
- The mass of the rocket is *m* [kg]
- The position and velocity are r(t) [m] and  $v(t) = \dot{r}(t)$  [m/s] • The initial condition:  $r(0) = \xi_1, v(0) = \dot{r}(0) = \xi_2$
- The thrust force is F(t)



- A rocket in the outer space
  - No friction nor gravity acts
- The mass of the rocket is *m* [kg]
- The position and velocity are r(t) [m] and  $v(t) = \dot{r}(t)$  [m/s]
  - The initial condition:  $r(0) = \xi_1$ ,  $v(0) = \dot{r}(0) = \xi_2$
- The thrust force is F(t)



- A rocket in the outer space
  - No friction nor gravity acts
- The mass of the rocket is *m* [kg]
- The position and velocity are r(t) [m] and  $v(t) = \dot{r}(t)$  [m/s]
  - The initial condition:  $r(0) = \xi_1$ ,  $v(0) = \dot{r}(0) = \xi_2$
- The thrust force is F(t)



# Differential equation



• The Newton's second law of motion gives

$$m\ddot{r}(t) = F(t), \quad r(0) = \xi_1, \quad \dot{r}(0) = \xi_2.$$

## State

The ordinal differential equation (ODE) of the rocket

$$m\ddot{r}(t) = F(t), \quad r(0) = \xi_1, \quad \dot{r}(0) = \xi_2.$$

• Define the state x(t) by

$$x(t) \triangleq \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix}.$$

Then we have

$$\dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ m^{-1}F(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\triangleq A} \underbrace{\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}}_{=x(t)} + \underbrace{\begin{bmatrix} 0 \\ m^{-1} \end{bmatrix}}_{\triangleq b} \underbrace{F(t)}_{\triangleq u(t)}$$

#### State

• The ordinal differential equation (ODE) of the rocket

$$m\ddot{r}(t) = F(t), \quad r(0) = \xi_1, \quad \dot{r}(0) = \xi_2.$$

• Define the state x(t) by

$$x(t) \triangleq \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix}.$$

Then we have

$$\dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ m^{-1}F(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\triangleq A} \underbrace{\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}}_{=x(t)} + \underbrace{\begin{bmatrix} 0 \\ m^{-1} \end{bmatrix}}_{\triangleq b} \underbrace{F(t)}_{\triangleq u(t)}$$

## State

• The ordinal differential equation (ODE) of the rocket

$$m\ddot{r}(t) = F(t), \quad r(0) = \xi_1, \quad \dot{r}(0) = \xi_2.$$

• Define the state x(t) by

$$x(t) \triangleq \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \triangleq \begin{bmatrix} r(t) \\ \dot{r}(t) \end{bmatrix}.$$

Then we have

$$\dot{x}(t) = \begin{bmatrix} \dot{r}(t) \\ \ddot{r}(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ m^{-1}F(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}}_{\triangleq A} \underbrace{\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}}_{=x(t)} + \underbrace{\begin{bmatrix} 0 \\ m^{-1} \end{bmatrix}}_{\triangleq b} \underbrace{F(t)}_{\triangleq u(t)}$$

## State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- x(t): state
- $\xi = [\xi_1, \xi_2] = [r(0), \dot{r}(0)]^{\mathsf{T}}$ : initial state
- u(t): control

$$x(t) = e^{At}\xi + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau, \quad t \ge 0.$$

## State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- *x*(*t*): **state**
- $\xi = [\xi_1, \xi_2] = [r(0), \dot{r}(0)]^{\mathsf{T}}$ : initial state
- u(t): control

$$x(t) = e^{At}\xi + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau, \quad t \ge 0.$$

## State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- *x*(*t*): **state**
- $\xi = [\xi_1, \xi_2] = [r(0), \dot{r}(0)]^{\mathsf{T}}$ : initial state
- u(t): control

$$x(t) = e^{At}\xi + \int_0^t e^{A(t-\tau)} \boldsymbol{b} u(\tau) d\tau, \quad t \ge 0.$$

## State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- *x*(*t*): **state**
- $\xi = [\xi_1, \xi_2] = [r(0), \dot{r}(0)]^{\mathsf{T}}$ : initial state
- u(t): control

$$x(t) = e^{At}\xi + \int_0^t e^{A(t-\tau)} \boldsymbol{b} u(\tau) d\tau, \quad t \ge 0.$$

## State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- *x*(*t*): state
- $\xi = [\xi_1, \xi_2] = [r(0), \dot{r}(0)]^{\mathsf{T}}$ : initial state
- u(t): control

$$x(t) = e^{At}\xi + \int_0^t e^{A(t-\tau)}bu(\tau)d\tau, \quad t \ge 0.$$

## State transfer problem

- The initial state  $x(0) = \xi$  is observed at time t = 0.
- Find a control u(t),  $0 \le t \le T$  that drives the state x(t) from a given initial state  $\xi$  to the origin 0 in a given time T > 0.

## State transfer problem

- The initial state  $x(0) = \xi$  is observed at time t = 0.
- Find a control u(t),  $0 \le t \le T$  that drives the state x(t) from a given initial state  $\xi$  to the origin 0 in a given time T > 0.



• State equation:

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

## Controllability

We call the system  $(\star)$  is controllable if for any initial state  $x(0) = \xi \in \mathbb{R}^d$ , there exist a time T > 0 and control u(t),  $0 \le t \le T$  such that the state x(t) in  $(\star)$  is driven to the origin at time t = T, that is x(T) = 0.

• State equation:

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

## Controllability

We call the system  $(\star)$  is controllable if for any initial state  $x(0) = \xi \in \mathbb{R}^d$ , there exist a time T > 0 and control u(t),  $0 \le t \le T$  such that the state x(t) in  $(\star)$  is driven to the origin at time t = T, that is  $x(T) = \mathbf{0}$ .



• State equation:

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

#### Theorem

The dynamical system  $(\star)$  is controllable if and only if the following matrix called the controllability matrix

$$M \triangleq \begin{bmatrix} \mathbf{b} & A\mathbf{b} & A^2\mathbf{b} & \dots & A^{d-1}\mathbf{b} \end{bmatrix}$$

is non-singular.

• State equation:

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

#### **Theorem**

The dynamical system  $(\star)$  is controllable if and only if the following matrix called the controllability matrix

$$M \triangleq \begin{bmatrix} \boldsymbol{b} & A\boldsymbol{b} & A^2\boldsymbol{b} & \dots & A^{d-1}\boldsymbol{b} \end{bmatrix}$$

is non-singular.

- Suppose a dynamical system is controllable.
- Then for any  $\xi \in \mathbb{R}^d$ , any  $\zeta \in \mathbb{R}^d$ , and any T > 0, there exist a control u(t),  $0 \le t \le T$  that achieves

$$x(0) = \xi, \quad x(T) = \zeta.$$

- the shorter the time T > 0 is, the larger the magnitude and the shorter the support of u(t) should be.
- The shape of u(t) may approach to something like the Dirac's delta when T approaches to zero.
- This is actually impossible.

- Suppose a dynamical system is controllable.
- Then for any  $\xi \in \mathbb{R}^d$ , any  $\zeta \in \mathbb{R}^d$ , and any T > 0, there exist a control u(t),  $0 \le t \le T$  that achieves

$$x(0) = \xi$$
,  $x(T) = \zeta$ .

- the shorter the time T > 0 is, the larger the magnitude and the shorter the support of u(t) should be.
- The shape of u(t) may approach to something like the Dirac's delta when T approaches to zero.
- This is actually impossible.

- Suppose a dynamical system is controllable.
- Then for any  $\xi \in \mathbb{R}^d$ , any  $\zeta \in \mathbb{R}^d$ , and any T > 0, there exist a control u(t),  $0 \le t \le T$  that achieves

$$x(0) = \xi$$
,  $x(T) = \zeta$ .

- the shorter the time T > 0 is, the larger the magnitude and the shorter the support of u(t) should be.
- The shape of u(t) may approach to something like the Dirac's delta when T approaches to zero.
- This is actually impossible.

- Suppose a dynamical system is controllable.
- Then for any  $\xi \in \mathbb{R}^d$ , any  $\zeta \in \mathbb{R}^d$ , and any T > 0, there exist a control u(t),  $0 \le t \le T$  that achieves

$$x(0) = \xi, \quad x(T) = \zeta.$$

- the shorter the time T > 0 is, the larger the magnitude and the shorter the support of u(t) should be.
- The shape of u(t) may approach to something like the Dirac's delta when T approaches to zero.
- This is actually impossible.

- Suppose a dynamical system is controllable.
- Then for any  $\xi \in \mathbb{R}^d$ , any  $\zeta \in \mathbb{R}^d$ , and any T > 0, there exist a control u(t),  $0 \le t \le T$  that achieves

$$x(0) = \xi$$
,  $x(T) = \zeta$ .

- the shorter the time T > 0 is, the larger the magnitude and the shorter the support of u(t) should be.
- The shape of u(t) may approach to something like the Dirac's delta when T approaches to zero.
- This is actually impossible.

## *T*-controllable set

• We usually assume the following limitation on u(t):

$$|u(t)| \le 1$$
,  $\forall t \in [0, T]$ .

- A control that satisfies this constraint is called an admissible control.
- The admissible control can be characterized by the *T*-controllable set.

## *T*-controllable set

• We usually assume the following limitation on u(t):

$$|u(t)| \le 1, \quad \forall t \in [0, T].$$

- A control that satisfies this constraint is called an admissible control.
- The admissible control can be characterized by the *T*-controllable set

Fix T > 0. The set of initial states that can be steered to the origin by some admissible control u(t),  $0 \le t \le T$  is called the T-controllable set. We denote this set by  $\mathcal{R}(T)$ .

## *T*-controllable set

• We usually assume the following limitation on u(t):

$$|u(t)| \le 1$$
,  $\forall t \in [0, T]$ .

- A control that satisfies this constraint is called an admissible control.
- The admissible control can be characterized by the *T*-controllable set.

#### T-Controllable Set

Fix T > 0. The set of initial states that can be steered to the origin by some admissible control u(t),  $0 \le t \le T$  is called the T-controllable set. We denote this set by  $\mathcal{R}(T)$ .

### *T*-controllable set

• We usually assume the following limitation on u(t):

$$|u(t)| \le 1$$
,  $\forall t \in [0, T]$ .

- A control that satisfies this constraint is called an admissible control.
- The admissible control can be characterized by the *T*-controllable set.

#### T-Controllable Set

Fix T > 0. The set of initial states that can be steered to the origin by some admissible control u(t),  $0 \le t \le T$  is called the T-controllable set. We denote this set by  $\mathcal{R}(T)$ .

# *T*-controllable set

#### Theorem

For any T > 0, the T-controllable set  $\mathcal{R}(T)$  is a bounded, closed, and convex set. Also, if  $T_1 < T_2$  then  $\mathcal{R}(T_1) \subset \mathcal{R}(T_2)$ .





- Move the mass from  $x(0) = -\xi$  to x(T) = 0 by the force  $F(t) \le 1$ .
- ODE

$$m\ddot{x}(t) = F(t) - mg\sin\theta.$$



- Move the mass from  $x(0) = -\xi$  to x(T) = 0 by the force  $F(t) \le 1$ .
- ODE

$$m\ddot{x}(t) = F(t) - mg\sin\theta.$$



Let

$$T^* \triangleq \sqrt{\frac{2m\xi}{1 - mg\sin\theta}}.$$

We observe that

• If  $T < T^*$  there is no admissible control.

• If  $T = T^*$  there is just one admissible control F(t)

 $y(t) = \begin{cases} 1, & \text{if } t > t \end{cases}$ 

 $F(t) = \begin{cases} t, & \text{if } 0 \le t \le t, \\ 0, & \text{if } T^* < t \le T, \end{cases}$ 

•  $T^*$  is called the minimum time.



Let

$$T^* \triangleq \sqrt{\frac{2m\xi}{1 - mg\sin\theta}}.$$

- We observe that
  - If  $T < T^*$  there is no admissible control.
  - If  $T = T^*$  there is just one admissible control F(t) = 1,  $t \in [0, T^*]$
  - If  $T > T^*$  there is at least one admissible control

$$F(t) = \begin{cases} 1, & \text{if } 0 \le t \le T^*, \\ 0, & \text{if } T^* < t \le T, \end{cases}$$

• T\* is called the minimum time



Let

$$T^* \triangleq \sqrt{\frac{2m\xi}{1 - mg\sin\theta}}.$$

- We observe that
  - If  $T < T^*$  there is **no** admissible control.
  - If  $T = T^*$  there is just one admissible control F(t) = 1,  $t \in [0, T^*]$ .
  - If  $T > T^*$  there is at least one admissible control

$$F(t) = \begin{cases} 1, & \text{if } 0 \le t \le T^*, \\ 0, & \text{if } T^* < t \le T, \end{cases}$$

• T\* is called the minimum time



Let

$$T^* \triangleq \sqrt{\frac{2m\xi}{1 - mg\sin\theta}}.$$

- We observe that
  - If  $T < T^*$  there is **no** admissible control.
  - If  $T = T^*$  there is just one admissible control F(t) = 1,  $t \in [0, T^*]$ .
  - If  $T > T^*$  there is at least one admissible control

$$F(t) = \begin{cases} 1, & \text{if } 0 \le t \le T^*, \\ 0, & \text{if } T^* < t \le T, \end{cases}$$

• T\* is called the minimum time



Let

$$T^* \triangleq \sqrt{\frac{2m\xi}{1 - mg\sin\theta}}.$$

- We observe that
  - If  $T < T^*$  there is **no** admissible control.
  - If  $T = T^*$  there is just one admissible control F(t) = 1,  $t \in [0, T^*]$ .
  - If  $T > T^*$  there is at least one admissible control

$$F(t) = \begin{cases} 1, & \text{if } 0 \le t \le T^*, \\ 0, & \text{if } T^* < t \le T, \end{cases}$$

•  $T^*$  is called the minimum time.



$$T^*(\xi) \triangleq \inf\{T \ge 0 : \xi \in \mathcal{R}(T)\}.$$

- Is the minimum time finite?
- Define the controllable set

$$\mathcal{R} \triangleq \bigcup_{T>0} \mathcal{R}(T).$$

- If  $\xi \in \mathcal{R}$ , then  $T^*(\xi) < \infty$ .
- If  $\xi \notin \mathcal{R}$ , then we write  $T^*(\xi) = \infty$ .

$$T^*(\xi) \triangleq \inf\{T \ge 0 : \xi \in \mathcal{R}(T)\}.$$

- Is the minimum time finite?
- Define the controllable set

$$\mathcal{R} \triangleq \bigcup_{T>0} \mathcal{R}(T).$$

- If  $\xi \in \mathcal{R}$ , then  $T^*(\xi) < \infty$ .
- If  $\xi \notin \mathcal{R}$ , then we write  $T^*(\xi) = \infty$ .

$$T^*(\xi) \triangleq \inf\{T \ge 0 : \xi \in \mathcal{R}(T)\}.$$

- Is the minimum time finite?
- Define the controllable set

$$\mathcal{R} \triangleq \bigcup_{T>0} \mathcal{R}(T).$$

- If  $\xi \in \mathcal{R}$ , then  $T^*(\xi) < \infty$ .
- If  $\xi \notin \mathcal{R}$ , then we write  $T^*(\xi) = \infty$ .

$$T^*(\xi) \triangleq \inf\{T \ge 0 : \xi \in \mathcal{R}(T)\}.$$

- Is the minimum time finite?
- Define the controllable set

$$\mathcal{R} \triangleq \bigcup_{T>0} \mathcal{R}(T).$$

- If  $\xi \in \mathcal{R}$ , then  $T^*(\xi) < \infty$ .
- If  $\xi \notin \mathcal{R}$ , then we write  $T^*(\xi) = \infty$ .

$$T^*(\xi) \triangleq \inf\{T \ge 0 : \xi \in \mathcal{R}(T)\}.$$

- Is the minimum time finite?
- Define the controllable set

$$\mathcal{R} \triangleq \bigcup_{T>0} \mathcal{R}(T).$$

- If  $\xi \in \mathcal{R}$ , then  $T^*(\xi) < \infty$ .
- If  $\xi \notin \mathcal{R}$ , then we write  $T^*(\xi) = \infty$ .

- Even if the system is controllable, the controllable set  $\mathcal{R}$  may not be  $\mathbb{R}^d$ .
  - If the system is controllable, and the matrix *A* is stable, that is

$$\lambda(A) \subset \mathbb{C}_{-} \triangleq \{ z \in \mathbb{C} : \operatorname{Re} z \leq 0 \},$$

then  $\mathcal{R} = \mathbb{R}^d$ .

• If  $T_1 < T^*(\xi) < T_2$ , then  $\mathcal{R}(T_1) \subset \mathcal{R}(T^*(\xi)) \subset \mathcal{R}(T_2) \subset \mathcal{R}$ .

- Even if the system is controllable, the controllable set  $\mathcal{R}$  may not be  $\mathbb{R}^d$ .
  - If the system is controllable, and the matrix *A* is stable, that is,

$$\lambda(A) \subset \mathbb{C}_- \triangleq \{z \in \mathbb{C} : \operatorname{Re} z \le 0\},$$

then  $\mathcal{R} = \mathbb{R}^d$ .

• If  $T_1 < T^*(\xi) < T_2$ , then  $\mathcal{R}(T_1) \subset \mathcal{R}(T^*(\xi)) \subset \mathcal{R}(T_2) \subset \mathcal{R}$ .

- Even if the system is controllable, the controllable set  $\mathcal{R}$  may not be  $\mathbb{R}^d$ .
  - If the system is controllable, and the matrix *A* is stable, that is,

$$\lambda(A) \subset \mathbb{C}_- \triangleq \{z \in \mathbb{C} : \operatorname{Re} z \leq 0\},\$$

then  $\mathcal{R} = \mathbb{R}^d$ .

• If  $T_1 < T^*(\xi) < T_2$ , then  $\mathcal{R}(T_1) \subset \mathcal{R}(T^*(\xi)) \subset \mathcal{R}(T_2) \subset \mathcal{R}$ .



# **Table of Contents**

- Dynamical system
- Optimal Control
- Minimum-time Control
- Minimum-time Control of Rocket
- Conclusion

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to  $x(T) = \mathbf{0}$ .
- Such a control is called a feasible control
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} b u(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}.$$

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$ .
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to x(T) = 0.
- Such a control is called a feasible control.
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} b u(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}.$$

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$ .
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to x(T) = 0.
- Such a control is called a feasible control
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} b u(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}$$

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + b\mathbf{u}(t), \quad t \ge 0, \quad \mathbf{x}(0) = \boldsymbol{\xi} \in \mathbb{R}^d,$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$ .
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to x(T) = 0.
- Such a control is called a feasible control.
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} bu(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}.$$

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d,$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$ .
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to x(T) = 0.
- Such a control is called a feasible control.
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} b u(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}.$$

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d, \quad (\star)$$

- Fix T > 0 and assume  $x(0) = \xi \in \mathcal{R}(T)$ .
- Then there exists an admissible control  $u(t) \in [-1, 1]$  that steers the state from x(0) to  $x(T) = \mathbf{0}$ .
- Such a control is called a feasible control.
- Set of all feasible controls is denoted by  $\mathcal{U}(T, \xi)$ .
- This is given by

$$\mathcal{U}(T,\xi) = \left\{ u \in L^{\infty}(0,T) : \xi = -\int_{0}^{T} e^{-At} \boldsymbol{b} u(t) dt, \ |u(t)| \le 1, \ \forall t \in [0,T] \right\}.$$

- $\xi \in \mathcal{R}(T) \iff$  there exists an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .
- The minimum time  $T^*(\xi)$  is represented by

$$T^*(\xi) = \inf\{T \ge 0 : \exists u, u \in \mathcal{U}(T, \xi)\}.$$

•  $\xi \in \mathcal{R} \iff T^*(\xi) < \infty \iff$  there exists a finial time  $T \ge 0$  and an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .

- $\xi \in \mathcal{R}(T) \iff$  there exists an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .
- The minimum time  $T^*(\xi)$  is represented by

$$T^*(\boldsymbol{\xi}) = \inf\{T \geq 0 : \exists u, \ u \in \mathcal{U}(T, \boldsymbol{\xi})\}.$$

•  $\xi \in \mathcal{R} \iff T^*(\xi) < \infty \iff$  there exists a finial time  $T \ge 0$  and an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .

- $\xi \in \mathcal{R}(T) \iff$  there exists an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .
- The minimum time  $T^*(\xi)$  is represented by

$$T^*(\boldsymbol{\xi}) = \inf\{T \geq 0 : \exists u, u \in \mathcal{U}(T, \boldsymbol{\xi})\}.$$

•  $\xi \in \mathcal{R} \iff T^*(\xi) < \infty \iff$  there exists a finial time  $T \ge 0$  and an admissible control u such that  $u \in \mathcal{U}(T, \xi)$ .

#### Minimum-time control

minimize 
$$T$$
 subject to  $u \in \mathcal{U}(T, \xi)$ .  $(\star)$ 

 The solution of this optimization is called the minimum-time control or time-optimal control.

Assume  $T^*(\xi) < \infty$ . Then there exists a minimum-time control  $u^* \in \mathcal{U}(T^*(\xi), \xi)$ . Moreover, for any  $T > T^*(\xi)$ ,  $\mathcal{U}(T, \xi)$  is non-empty

• 
$$T^*(\xi) < \infty \iff \xi \in \mathcal{R}$$

#### Minimum-time control

minimize 
$$T$$
 subject to  $u \in \mathcal{U}(T, \xi)$ .  $(\star)$ 

• The solution of this optimization is called the minimum-time control or time-optimal control.

#### Theorem

Assume  $T^*(\xi) < \infty$ . Then there exists a minimum-time control  $u^* \in \mathcal{U}(T^*(\xi), \xi)$ . Moreover, for any  $T > T^*(\xi)$ ,  $\mathcal{U}(T, \xi)$  is non-empty.

• 
$$T^*(\xi) < \infty \iff \xi \in \mathcal{R}$$

#### Minimum-time control

minimize 
$$T$$
 subject to  $u \in \mathcal{U}(T, \xi)$ .  $(\star)$ 

 The solution of this optimization is called the minimum-time control or time-optimal control.

#### **Theorem**

Assume  $T^*(\xi) < \infty$ . Then there exists a minimum-time control  $u^* \in \mathcal{U}(T^*(\xi), \xi)$ . Moreover, for any  $T > T^*(\xi)$ ,  $\mathcal{U}(T, \xi)$  is non-empty.

• 
$$T^*(\xi) < \infty \iff \xi \in \mathcal{R}$$

#### Minimum-time control

minimize 
$$T$$
 subject to  $u \in \mathcal{U}(T, \xi)$ .  $(\star)$ 

 The solution of this optimization is called the minimum-time control or time-optimal control.

#### **Theorem**

Assume  $T^*(\xi) < \infty$ . Then there exists a minimum-time control  $u^* \in \mathcal{U}(T^*(\xi), \xi)$ . Moreover, for any  $T > T^*(\xi)$ ,  $\mathcal{U}(T, \xi)$  is non-empty.

•  $T^*(\xi) < \infty \iff \xi \in \mathcal{R}$ 

# Optimal control problem

# Optimal control problem

For the plant modeled by

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi, \in \mathbb{R}^d,$$

find an admissible control u (i.e.  $||u||_{\infty} \le 1$ ) that achieves

$$x(T)=\mathbf{0},$$

and minimizes the following cost function

$$J(u) = \int_0^T L(u(t))dt.$$

• For the minimum-time control we have L(u) = 1 (i.e. J(u) = T), and T is not fixed.

# Optimal control problem

# Optimal control problem

For the plant modeled by

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi, \in \mathbb{R}^d,$$

find an admissible control u (i.e.  $||u||_{\infty} \le 1$ ) that achieves

$$\boldsymbol{x}(T)=\mathbf{0},$$

and minimizes the following cost function

$$J(u) = \int_0^T L(u(t))dt.$$

• For the minimum-time control we have L(u) = 1 (i.e. J(u) = T), and T is not fixed.

### Hamiltonian

• The Hamiltonian for the optimal control problem is defined by

$$H^{\eta}(x, p, u) \triangleq p^{\top}(Ax + bu) + \eta L(u)$$

- p is called the co-state vector.
- $\eta \in \{0,1\}$  is called the abnormal multiplier.

### Hamiltonian

• The Hamiltonian for the optimal control problem is defined by

$$H^{\eta}(x, p, u) \triangleq p^{\top}(Ax + bu) + \eta L(u)$$

- *p* is called the co-state vector.
- $\eta \in \{0,1\}$  is called the abnormal multiplier.

### Hamiltonian

• The Hamiltonian for the optimal control problem is defined by

$$H^{\eta}(x, p, u) \triangleq p^{\top}(Ax + bu) + \eta L(u)$$

- *p* is called the co-state vector.
- $\eta \in \{0, 1\}$  is called the abnormal multiplier.

- Assume that an optimal control  $u^*$  of the optimal control problem (OPT) exists.
- Let us denote by  $x^*(t)$  the optimal state with the optimal control  $u^*(t)$ , that is,

$$x^*(t) \triangleq e^{At} \xi + \int_0^t e^{A(t-\tau)} b u^*(\tau) d\tau, \quad \forall t \in [0, T].$$

• Then there exist  $\eta \in \{0, 1\}$  and the optimal costate  $p^*(t)$  that satisfy the following conditions:

- Assume that an optimal control  $u^*$  of the optimal control problem (OPT) exists.
- Let us denote by  $x^*(t)$  the optimal state with the optimal control  $u^*(t)$ , that is,

$$\boldsymbol{x}^*(t) \triangleq e^{At}\boldsymbol{\xi} + \int_0^t e^{A(t-\tau)}\boldsymbol{b}u^*(\tau)d\tau, \quad \forall t \in [0,T].$$

• Then there exist  $\eta \in \{0,1\}$  and the optimal costate  $p^*(t)$  that satisfy the following conditions:

- Assume that an optimal control  $u^*$  of the optimal control problem (OPT) exists.
- Let us denote by  $x^*(t)$  the optimal state with the optimal control  $u^*(t)$ , that is,

$$\boldsymbol{x}^*(t) \triangleq e^{At}\boldsymbol{\xi} + \int_0^t e^{A(t-\tau)}\boldsymbol{b}u^*(\tau)d\tau, \quad \forall t \in [0,T].$$

• Then there exist  $\eta \in \{0,1\}$  and the optimal costate  $p^*(t)$  that satisfy the following conditions:

(non-triviality condition) The abnormal multiplier  $\eta$  and the optimal costate  $p^*$  satisfy the non-triviality condition:

$$|\eta| + ||\boldsymbol{p}^*||_{\infty} > 0.$$

(canonical equation) The following canonical equations hold

$$\dot{x}^*(t) = Ax^*(t) + bu(t),$$
  
 $\dot{p}^*(t) = -A^{\top}p^*(t), \quad \forall t \in [0, T]$ 

The differential equation for p(t) is called the adjoint equation.

(minimum condition) The optimal control  $u^*(t)$  minimizes Hamiltonian at each time  $t \in [0, T]$ . That is,

$$u^*(t) = \arg\min_{|u| \le 1} H^{\eta}(x^*(t), p^*(t), u), \quad \forall t \in [0, T].$$

(non-triviality condition) The abnormal multiplier  $\eta$  and the optimal costate  $p^*$  satisfy the non-triviality condition:

$$|\eta| + ||\boldsymbol{p}^*||_{\infty} > 0.$$

(canonical equation) The following canonical equations hold

$$\dot{x}^*(t) = Ax^*(t) + bu(t),$$
  
 $\dot{p}^*(t) = -A^{\top}p^*(t), \quad \forall t \in [0, T].$ 

The differential equation for p(t) is called the adjoint equation.

(minimum condition) The optimal control  $u^*(t)$  minimizes Hamiltonian at each time  $t \in [0, T]$ . That is,

$$u^*(t) = \arg\min_{|u| \le 1} H^{\eta}(x^*(t), p^*(t), u), \quad \forall t \in [0, T].$$

(non-triviality condition) The abnormal multiplier  $\eta$  and the optimal costate  $p^*$  satisfy the non-triviality condition:

$$|\eta| + ||\boldsymbol{p}^*||_{\infty} > 0.$$

(canonical equation) The following canonical equations hold

$$\dot{x}^*(t) = Ax^*(t) + bu(t),$$
  
 $\dot{p}^*(t) = -A^{\top}p^*(t), \quad \forall t \in [0, T].$ 

The differential equation for p(t) is called the adjoint equation.

(minimum condition) The optimal control  $u^*(t)$  minimizes Hamiltonian at each time  $t \in [0, T]$ . That is,

$$u^*(t) = \arg\min_{|u| \le 1} H^{\eta}(x^*(t), p^*(t), u), \quad \forall t \in [0, T].$$

(consistency) Hamiltonian satisfies

$$H^{\eta}\big(x^*(t),p^*(t),u^*(t)\big)=c,\quad\forall t\in[0,T],$$

where c is a constant independent of t. If T is not fixed (as in the minimum-time control), then

$$H^{\eta}(\mathbf{x}^*(t), \mathbf{p}^*(t), u^*(t)) = 0, \quad \forall t \in [0, T].$$

#### **Table of Contents**

- Dynamical system
- Optimal Control
- Minimum-time Control
- Minimum-time Control of Rocket
- Conclusion

Dynamical system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d.$$

- Assume  $\xi \in \mathcal{R}$ . Then  $T^*(\xi) < \infty$
- The minimum-time cost function is

$$J(u) = \int_0^T L(u(t))dt, \quad L(u) = 1.$$

The Hamiltonian is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta L(u)$$
$$= p^{\top}(Ax + bu) + \eta.$$

Dynamical system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d.$$

- Assume  $\xi \in \mathcal{R}$ . Then  $T^*(\xi) < \infty$ .
- The minimum-time cost function is

$$J(u) = \int_0^T L(u(t))dt, \quad L(u) = 1.$$

• The Hamiltonian is given by

$$H^{\eta}(x, \boldsymbol{p}, \boldsymbol{u}) = \boldsymbol{p}^{\top}(Ax + b\boldsymbol{u}) + \eta L(\boldsymbol{u})$$
$$= \boldsymbol{p}^{\top}(Ax + b\boldsymbol{u}) + \eta.$$

Dynamical system

$$\dot{\boldsymbol{x}}(t) = A\boldsymbol{x}(t) + \boldsymbol{b}\boldsymbol{u}(t), \quad t \geq 0, \quad \boldsymbol{x}(0) = \boldsymbol{\xi} \in \mathbb{R}^d.$$

- Assume  $\xi \in \mathcal{R}$ . Then  $T^*(\xi) < \infty$ .
- The minimum-time cost function is

$$J(u) = \int_0^T L(u(t))dt, \quad L(u) = 1.$$

The Hamiltonian is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta L(u)$$
$$= p^{\top}(Ax + bu) + \eta.$$

Dynamical system

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi \in \mathbb{R}^d.$$

- Assume  $\xi \in \mathcal{R}$ . Then  $T^*(\xi) < \infty$ .
- The minimum-time cost function is

$$J(u) = \int_0^T L(u(t))dt, \quad L(u) = 1.$$

• The Hamiltonian is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta L(u)$$
$$= p^{\top}(Ax + bu) + \eta.$$

• From Pontryagin's minimum principle, the optimal control  $u^*(t)$  should satisfy

$$u^{*}(t) = \arg\min_{u \in [-1,1]} H^{\eta}(x^{*}(t), p^{*}(t), u), \quad \forall t \in [0, T^{*}(\xi)], \quad (\star)$$

- $x^*(t)$ : optimal state
- $p^*(t)$ : optimal costate
- From  $(\star)$ , we have

$$u^*(t) = \arg\min_{u \in [-1,1]} \boldsymbol{p}^*(t)^{\top} \boldsymbol{b} u = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top} \boldsymbol{b}),$$

• From Pontryagin's minimum principle, the optimal control  $u^*(t)$  should satisfy

$$u^{*}(t) = \arg\min_{u \in [-1,1]} H^{\eta}(x^{*}(t), p^{*}(t), u), \quad \forall t \in [0, T^{*}(\xi)], \quad (\star)$$

- $x^*(t)$ : optimal state
- $p^*(t)$ : optimal costate
- From  $(\star)$ , we have

$$u^*(t) = \arg\min_{u \in [-1,1]} \boldsymbol{p}^*(t)^{\top} \boldsymbol{b} u = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top} \boldsymbol{b}),$$

$$\operatorname{sgn}(a) = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$$

 $sgn(a) \in [-1, 1], \quad a = 0.$ 

• From Pontryagin's minimum principle, the optimal control  $u^*(t)$  should satisfy

$$u^{*}(t) = \arg\min_{u \in [-1,1]} H^{\eta}(x^{*}(t), p^{*}(t), u), \quad \forall t \in [0, T^{*}(\xi)], \quad (\star)$$

- $x^*(t)$ : optimal state
- $p^*(t)$ : optimal costate
- From  $(\star)$ , we have

$$u^*(t) = \arg\min_{u \in [-1,1]} \boldsymbol{p}^*(t)^{\top} \boldsymbol{b} u = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top} \boldsymbol{b}),$$

$$sgn(a) = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$$
$$sgn(a) \in [-1, 1], \quad a = 0$$

• From Pontryagin's minimum principle, the optimal control  $u^*(t)$  should satisfy

$$u^{*}(t) = \arg\min_{u \in [-1,1]} H^{\eta}(x^{*}(t), p^{*}(t), u), \quad \forall t \in [0, T^{*}(\xi)], \quad (\star)$$

- $x^*(t)$ : optimal state
- $p^*(t)$ : optimal costate
- From  $(\star)$ , we have

$$u^*(t) = \arg\min_{u \in [-1,1]} \boldsymbol{p}^*(t)^{\top} \boldsymbol{b} u = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top} \boldsymbol{b}),$$
  
$$\operatorname{sgn}(a) = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$$
  
$$\operatorname{sgn}(a) \in [-1,1], \quad a = 0.$$

Minimum-time control

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top}\boldsymbol{b}),$$

• If  $p^*(t)^{\mathsf{T}}b = 0$ , then  $u^*(t)$  cannot be uniquely determined.

#### Lemma

If (A, b) is controllable, then the function  $p^*(t)^T b$  is not zero for almost all  $t \in [0, T^*(\xi)]$ .

Minimum-time control

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top}\boldsymbol{b}),$$

• If  $p^*(t)^T b = 0$ , then  $u^*(t)$  cannot be uniquely determined.

#### Lemma

If (A, b) is controllable, then the function  $p^*(t)^{\top}b$  is not zero for almost all  $t \in [0, T^*(\xi)]$ .

Minimum-time control

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top}\boldsymbol{b}),$$

• If  $p^*(t)^T b = 0$ , then  $u^*(t)$  cannot be uniquely determined.

#### Lemma

If (A, b) is controllable, then the function  $p^*(t)^{\mathsf{T}}b$  is not zero for almost all  $t \in [0, T^*(\xi)]$ .

Minimum-time control

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\top}\boldsymbol{b}),$$

• If  $p^*(t)^T b = 0$ , then  $u^*(t)$  cannot be uniquely determined.

#### Lemma

If (A, b) is controllable, then the function  $p^*(t)^{\mathsf{T}}b$  is not zero for almost all  $t \in [0, T^*(\xi)]$ .

• For the minimum-time control problem, we have the following existence and uniqueness theorems.

#### Theorem (Existence)

If the initial state  $\xi$  is in the controllable set R then a minimum-time control exists.

#### Theorem (Uniqueness)

Assume that (A, b) is controllable. Then the minimum-time control is (if it exists) unique.

#### Corollary

• For the minimum-time control problem, we have the following existence and uniqueness theorems.

#### Theorem (Existence)

If the initial state  $\xi$  is in the controllable set R then a minimum-time control exists.

#### Theorem (Uniqueness)

Assume that (A, b) is controllable. Then the minimum-time control is (if it exists) unique.

#### Corollary

• For the minimum-time control problem, we have the following existence and uniqueness theorems.

#### Theorem (Existence)

If the initial state  $\xi$  is in the controllable set R then a minimum-time control exists.

### Theorem (Uniqueness)

Assume that (A, b) is controllable. Then the minimum-time control is (if it exists) unique.

### Corollary

• For the minimum-time control problem, we have the following existence and uniqueness theorems.

#### Theorem (Existence)

If the initial state  $\xi$  is in the controllable set R then a minimum-time control exists.

### Theorem (Uniqueness)

Assume that (A, b) is controllable. Then the minimum-time control is (if it exists) unique.

### Corollary

#### **Table of Contents**

- Dynamical system
- Optimal Control
- Minimum-time Control
- Minimum-time Control of Rocket
- Conclusion

### Rocket control problem

• State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi,$$
 where  $x(t) = [r(t), \dot{r}(t)]^{\mathsf{T}}, u(t) = F(t),$  and 
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ b = \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix}$$

• Since (A, b) is controllable and A is stable (the eigs are 0, 0), there uniquely exists the minimum-time control  $u^*(t)$  for any initial state  $\xi \in \mathbb{R}^2$ .



### Rocket control problem

State equation

$$\dot{x}(t) = Ax(t) + bu(t), \quad t \ge 0, \quad x(0) = \xi,$$
where  $x(t) = [r(t), \dot{r}(t)]^{\mathsf{T}}, u(t) = F(t),$  and
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ b = \begin{bmatrix} 0 \\ m^{-1} \end{bmatrix}$$

• Since (A, b) is controllable and A is stable (the eigs are 0, 0), there uniquely exists the minimum-time control  $u^*(t)$  for any initial state  $\xi \in \mathbb{R}^2$ .



#### Minimum-time control of rocket

• The Hamiltonian for the minimum-time control is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta = p_1x_2 + p_2u + \eta.$$

The optimal control is given by

$$\iota^*(t) = -\operatorname{sgn}(p^*(t)^{\top}b) = -\operatorname{sgn}(p_2^*(t)).$$

where  $p^*(t) = [p_1^*(t), p_2^*(t)]^{\mathsf{T}}$  is the optimal costate.

• From the canonical equation,  $p_2^*(t)$  is a linear function given by

$$p_2^*(t) = \pi_2 - \pi_1 t.$$

#### Minimum-time control of rocket

• The Hamiltonian for the minimum-time control is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta = p_1x_2 + p_2u + \eta.$$

• The optimal control is given by

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\mathsf{T}}\boldsymbol{b}) = -\operatorname{sgn}(p_2^*(t)).$$

where  $p^*(t) = [p_1^*(t), p_2^*(t)]^T$  is the optimal costate.

• From the canonical equation,  $p_2^*(t)$  is a linear function given by

$$p_2^*(t) = \pi_2 - \pi_1 t.$$

#### Minimum-time control of rocket

• The Hamiltonian for the minimum-time control is given by

$$H^{\eta}(x, p, u) = p^{\top}(Ax + bu) + \eta = p_1x_2 + p_2u + \eta.$$

• The optimal control is given by

$$u^*(t) = -\operatorname{sgn}(\boldsymbol{p}^*(t)^{\mathsf{T}}\boldsymbol{b}) = -\operatorname{sgn}(p_2^*(t)).$$

where  $p^*(t) = [p_1^*(t), p_2^*(t)]^T$  is the optimal costate.

• From the canonical equation,  $p_2^*(t)$  is a linear function given by

$$p_2^*(t) = \pi_2 - \pi_1 t.$$

# Optimal costate $p_2^*(t)$



• The minimum-time control is bang-bang:

$$u^*(t) = \begin{cases} 1, & \text{if } x(t) \in \gamma_+ \cup R_+ \setminus \{\mathbf{0}\}, \\ -1, & \text{if } x(t) \in \gamma_- \cup R_- \setminus \{\mathbf{0}\}, \\ 0, & \text{if } x(t) = \mathbf{0}. \end{cases}$$



• The curve  $\gamma = \gamma_+ \cup \gamma_-$  is called the switching curve.

• The minimum-time control is bang-bang:

$$u^*(t) = \begin{cases} 1, & \text{if } x(t) \in \gamma_+ \cup R_+ \setminus \{\mathbf{0}\}, \\ -1, & \text{if } x(t) \in \gamma_- \cup R_- \setminus \{\mathbf{0}\}, \\ 0, & \text{if } x(t) = \mathbf{0}. \end{cases}$$



• The curve  $\gamma = \gamma_+ \cup \gamma_-$  is called the switching curve.

- A dynamical system is modeled by a differential equation called the state-space equation.
- We cannot control uncontrollable systems.
- Optimal control is the best control among feasible controls for a controllable system.
- Minimum-time control becomes bang-bang when the system is controllable.

- A dynamical system is modeled by a differential equation called the state-space equation.
- We cannot control uncontrollable systems.
- Optimal control is the best control among feasible controls for a controllable system.
- Minimum-time control becomes bang-bang when the system is controllable.

- A dynamical system is modeled by a differential equation called the state-space equation.
- We cannot control uncontrollable systems.
- Optimal control is the best control among feasible controls for a controllable system.
- Minimum-time control becomes bang-bang when the system is controllable.

- A dynamical system is modeled by a differential equation called the state-space equation.
- We cannot control uncontrollable systems.
- Optimal control is the best control among feasible controls for a controllable system.
- Minimum-time control becomes bang-bang when the system is controllable.