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Dynamical systems

@ A dynamical system is a moving system.
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Dynamical systems

@ A dynamical system is a moving system.
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Dynamical systems

@ A dynamical system is a moving system.

e industrial products
e vehicles, airplanes, motors, electric circuits, etc,
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Dynamical systems

@ A dynamical system is a moving system.
e industrial products
o vehicles, airplanes, motors, electric circuits, etc,
e movement of planetary, change of weather, ant swarm, cell
movement, fluctuations in stock prices, and spread of virus.
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Dynamical systems

@ A dynamical system is a moving system.
e industrial products
o vehicles, airplanes, motors, electric circuits, etc,
e movement of planetary, change of weather, ant swarm, cell
movement, fluctuations in stock prices, and spread of virus.
o In Part II, we will learn sparsity methods for dynamical systems.
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Rocket as a dynamical system

@ A rocket in the outer space
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Rocket as a dynamical system

@ A rocket in the outer space
o No friction nor gravity acts
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Rocket as a dynamical system

@ A rocket in the outer space
o No friction nor gravity acts

@ The mass of the rocket is m [kg]
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Rocket as a dynamical system

@ A rocket in the outer space
o No friction nor gravity acts

@ The mass of the rocket is m [kg]
e The position and velocity are r(t) [m] and v(t) = 7(f) [m/s]
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Rocket as a dynamical system

@ A rocket in the outer space
o No friction nor gravity acts

@ The mass of the rocket is m [kg]
e The position and velocity are r(t) [m] and v(t) = 7(f) [m/s]
e The initial condition: r(0) = &1, v(0) = #(0) = &,

@ The thrust force is F(t)
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Differential equation

r(0) = & rocket
70) =& r(t), ()

@ The Newton'’s second law of motion gives

mi(t) = F(t), r(0)=¢&, #(0)= <.
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@ The ordinal differential equation (ODE) of the rocket

mi(t) = F(t), r(0) =&, 7(0)=¢&.
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@ The ordinal differential equation (ODE) of the rocket
mi(t) = F(t), r(0)=¢&, 7(0)= <

o Define the state x(t) by

L[] . [
x(t) * [xlu)] * [r‘(t)]'
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@ The ordinal differential equation (ODE) of the rocket
mi(t) = F(t), r(0)=¢&, 7(0)= <

o Define the state x(t) by

o x| o [r(t)
xo) = [xlu)] - [r‘(t)]'
@ Then we have

O] @ ] o 1] [a®] [ o
SR A e B O s e
T T T s

2A :x(t) £p
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State equation

State equation

#(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY,
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State equation

State equation

#(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY,

@ x(t): state
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State equation

State equation

#(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY,

@ x(t): state
o &=[&1,&] =[r(0),7(0)]: initial state
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State equation

State equation

#(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY,

o x(t): state
e &=1[&1,&]=1[r(0),7(0)]": initial state
@ u(t): control
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State equation

State equation

#(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY,

o x(t): state
e &=1[&1,&]=1[r(0),7(0)]": initial state
@ u(t): control

The solution

t
x(t) = eME + / A Dbu(t)dr, t>0.
0
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State transfer problem

e The initial state x(0) = & is observed at time t = 0.
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State transfer problem

e The initial state x(0) = & is observed at time t = 0.

e Find a control u(t),0 < t < T that drives the state x(¢) from a
given initial state & to the origin 0 in a given time T > 0.

X2

X1
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Controllability

e State equation:

i(t) = Ax(t) + bu(t), +>0, x(0)=&eRY, (%)
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Controllability

e State equation:
i(t) = Ax(t) + bu(t), t>0, x(0)=E&eRY, (%)

Controllability

We call the system () is controllable if for any initial state

x(0) = & € RY, there exist a time T > 0 and control u(t), 0 < t < T such
that the state x(¢) in (%) is driven to the origin at time t = T, that is
x(T) =0.
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Controllability

e State equation:

i(t) = Ax(t) + bu(t), t>0, x(0)=&eR? (%)
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Controllability

e State equation:

i(t) = Ax(t) + bu(t), t>0, x(0)=&eR? (%)

Theorem

The dynamical system () is controllable if and only if the following matrix
called the controllability matrix

M2|[b Ab A% ... A"D|

is non-singular.
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Controllabilit

@ Suppose a dynamical system is controllable.

(Univ of Ki ) Sparsity Methods



Controllability

@ Suppose a dynamical system is controllable.

@ Then for any & € R4, any ¢ € R? and any T > 0, there exist a
control u(t), 0 <t < T that achieves

x(0)=¢, x(T)=c¢.
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Controllability

@ Suppose a dynamical system is controllable.

@ Then for any & € R4, any ¢ € R? and any T > 0, there exist a
control u(t), 0 <t < T that achieves

x(0)=¢, x(T)=c¢.

o the shorter the time T > 0 is, the larger the magnitude and the
shorter the support of u(t) should be.
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Controllability

@ Suppose a dynamical system is controllable.

@ Then for any & € R4, any ¢ € R? and any T > 0, there exist a
control u(t), 0 <t < T that achieves

x(0)=¢, x(T)=c¢.

o the shorter the time T > 0 is, the larger the magnitude and the
shorter the support of u(t) should be.

@ The shape of u(t) may approach to something like the Dirac’s
delta when T approaches to zero.
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Controllability

@ Suppose a dynamical system is controllable.

@ Then for any & € R4, any ¢ € R? and any T > 0, there exist a
control u(t), 0 <t < T that achieves

x(0)=¢, x(T)=c¢.

o the shorter the time T > 0 is, the larger the magnitude and the
shorter the support of u(t) should be.

@ The shape of u(t) may approach to something like the Dirac’s
delta when T approaches to zero.

@ This is actually impossible.
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T-controllable set

e We usually assume the following limitation on u(t):

lu(t)] <1, Vtel0,T].
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T-controllable set

e We usually assume the following limitation on u(t):
lu(t)l <1, Vtel0,T].

@ A control that satisfies this constraint is called an admissible
control.
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T-controllable set

e We usually assume the following limitation on u(t):
lu(t)l <1, Vtel0,T].

@ A control that satisfies this constraint is called an admissible
control.

@ The admissible control can be characterized by the T-controllable
set.
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T-controllable set

e We usually assume the following limitation on u(t):
lu(t)l <1, Vtel0,T].

o A control that satisfies this constraint is called an admissible
control.

@ The admissible control can be characterized by the T-controllable
set.

T-Controllable Set

Fix T > 0. The set of initial states that can be steered to the origin by
some admissible control u(t), 0 < t < T is called the T-controllable set.

We denote this set by R(T).
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T-controllable set

Forany T > 0, the T-controllable set R(T) is a bounded, closed, and convex
set. Also, if Ty < T then R(T1) € R(T2).

€2
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F(t)

mg sin 6

I

@ Move the mass from x(0) = —¢ to x(T) = 0 by the force F(t) < 1.
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F(t)

mg sin 6

I

@ Move the mass from x(0) = —¢ to x(T) = 0 by the force F(t) < 1.

e ODE
mi(t) = F(t) —mgsin 0.
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Example

mgsin g

o Let

T* £

1-mgsin®’
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mgsin g

o Let

2mé
1-mgsin®’

T* £

@ We observe that
o If T < T* there is no admissible control.
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mgsin g

o Let

2mé
1-mgsin®’

T* £

o We observe that
o If T < T* there is no admissible control.
o If T = T there is just one admissible control F(t) =1, t € [0, T"].
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0o~
F(t)

mgsin g

[}

5

o Let
2mé

T2\ |[———.
1-mgsin0

o We observe that
o If T < T* there is no admissible control.
o If T = T there is just one admissible control F(t) =1, t € [0, T"].
o If T > T* there is at least one admissible control

1, if 0<t<T?,
F(ty=4""
0, if T"<t<T,
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0o~
F(t)

mgsin g

[}

5

o Let
2mé

T2\ |[———.
1-mgsin0

o We observe that
o If T < T* there is no admissible control.
o If T = T there is just one admissible control F(t) =1, t € [0, T"].
o If T > T* there is at least one admissible control

1, if 0<t<T?,
F(ty=4""
0, if T"<t<T,

o T*is called the minimum time.
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Controllable set

e The minimum time T*(&) from the initial state & to the origin is
defined as
T(&) =inf{T >0: & € R(T)}.
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Controllable set

e The minimum time T*(&) from the initial state & to the origin is
defined as
T(&) =inf{T >0: & € R(T)}.

o Is the minimum time finite?
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Controllable set

@ The minimum time T*(&) from the initial state & to the origin is
defined as
T*(&) =inf{T >0: & e R(T)}.
@ Is the minimum time finite?

@ Define the controllable set

R = UR(T).

T>0
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Controllable set

@ The minimum time T*(&) from the initial state & to the origin is
defined as
T*(&) =inf{T >0: & e R(T)}.

o Is the minimum time finite?

@ Define the controllable set

R = UR(T).

T>0

o If £ e R, then T*(&) < oo.
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Controllable set

@ The minimum time T*(&) from the initial state & to the origin is
defined as
T*(&) =inf{T >0: & e R(T)}.

Is the minimum time finite?

Define the controllable set

R = UR(T).

T>0

If £ € R, then T*(&) < oo.
If £ ¢ R, then we write T*(&) = oo.
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Controllable set

e Even if the system is controllable, the controllable set R may not
be R4.
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Controllable set

e Even if the system is controllable, the controllable set R may not
be R4.
o If the system is controllable, and the matrix A is stable, that is,
AMA)cC_£{z€eC:Rez <0},

then R = R4,
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Controllable set

e Even if the system is controllable, the controllable set R may not
be R4.
o If the system is controllable, and the matrix A is stable, that is,
AMA)cC_£{z€eC:Rez <0},

then R = R4,
o If T1 < T*(&) < Ty, then R(T71) c R(T*(&)) c R(T») c R.
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Feasible control

e Dynamical system

i(t) = Ax(t) + bu(t), t>0, x(0)=&eRY, (%)
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Feasible control

e Dynamical system
i(t) = Ax(t) + bu(t), +>0, x(0)=&eRY, (%)

e Fix T > 0 and assume x(0) = & € R(T).
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Feasible control

e Dynamical system

i(t) = Ax(t) + bu(t), t>0, x(0)=&eRY, (%)

e Fix T > 0 and assume x(0) = & € R(T).

@ Then there exists an admissible control u(t) € [—1, 1] that steers
the state from x(0) to x(T) = 0.
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Feasible control

e Dynamical system

i(t) = Ax(t) + bu(t), t>0, x(0)=&eRY, (%)

e Fix T > 0 and assume x(0) = & € R(T).

@ Then there exists an admissible control u(t) € [—1, 1] that steers
the state from x(0) to x(T) = 0.

@ Such a control is called a feasible control.
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Feasible control

e Dynamical system

i(t) = Ax(t) + bu(t), t>0, x(0)=&eRY, (%)

e Fix T > 0 and assume x(0) = & € R(T).

@ Then there exists an admissible control u(t) € [—1, 1] that steers
the state from x(0) to x(T) = 0.

@ Such a control is called a feasible control.
e Set of all feasible controls is denoted by U(T, &).
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Feasible control

e Dynamical system

i(t) = Ax(t) + bu(t), t>0, x(0)=&eRY, (%)

e Fix T > 0 and assume x(0) = & € R(T).

@ Then there exists an admissible control u(t) € [—1, 1] that steers
the state from x(0) to x(T) = 0.

@ Such a control is called a feasible control.

e Set of all feasible controls is denoted by U(T, &).
e This is given by

T
U(T, &) = {u e L®(0,T): & = —/0 e Mbu(t)dt, |u(t) <1, Vt €0, T]}.
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Feasible control

e £ € R(T) & there exists an admissible control u such that
ueU,E).

M. Nagahara (Univ of Kitakyushu) Sparsity Methods



Feasible control

e £ € R(T) & there exists an admissible control u such that
ueU,s).

e The minimum time T*(&) is represented by

T(&) =inf{T >0:3u, ueUT,E)}.
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Feasible control

e £ € R(T) & there exists an admissible control u such that
ueU,s).

e The minimum time T*(&) is represented by
T(&) =inf{T >0:3u, ueUT,E)}.

e e R = T*(&) < 0 &= there exists a finial time T > 0 and
an admissible control u such that u € U(T, &).
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Minimum-time control

Minimum-time control

minimize T subjectto u € U(T,§). (%)
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Minimum-time control

Minimum-time control

minimize T subjectto u € U(T,§). (%)

@ The solution of this optimization is called the minimum-time
control or time-optimal control.
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Minimum-time control

Minimum-time control

minimize T subjectto u € U(T,§). (%)
u

@ The solution of this optimization is called the minimum-time
control or time-optimal control.

Assume T*(&) < oo. Then there exists a minimum-time control
u* € U(T* (&), &). Moreover, for any T > T*(&), U(T, &) is non-empty.
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Minimum-time control

Minimum-time control

minimize T subjectto u € U(T,§). (%)
u

@ The solution of this optimization is called the minimum-time
control or time-optimal control.

Assume T*(&) < oo. Then there exists a minimum-time control
u* € U(T* (&), &). Moreover, for any T > T*(&), U(T, &) is non-empty.

e T (&) <0 e &£eR
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Optimal control problem

Optimal control problem
For the plant modeled by

i(t) = Ax(t) + bu(t), t=>0, x(0)=& R,

find an admissible control u (i.e. ||u||c < 1) that achieves

x(T) =0,

and minimizes the following cost function

T
](u)=/0 L(u(t))dt.
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Optimal control problem

Optimal control problem
For the plant modeled by

i(t) = Ax(t) + bu(t), t=>0, x(0)=& R,

find an admissible control u (i.e. ||u||c < 1) that achieves

x(T) =0,

and minimizes the following cost function

T
](u)=/0 L(u(t))dt.

e For the minimum-time control we have L(1) =1 (i.e. J(u) = T),
and T is not fixed.
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@ The Hamiltonian for the optimal control problem is defined by

Hx,p,u) = p"(Ax + bu) + nL(u)
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@ The Hamiltonian for the optimal control problem is defined by

Hx,p,u) = p"(Ax + bu) + nL(u)

o p is called the co-state vector.
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@ The Hamiltonian for the optimal control problem is defined by

Hx,p,u) = p"(Ax + bu) + nL(u)

o p is called the co-state vector.
o 1 €{0,1} is called the abnormal multiplier.
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Pontryagin’s Minimum Principle (PMP)

e Assume that an optimal control u” of the optimal control problem
(OPT) exists.
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Pontryagin’s Minimum Principle (PMP)

e Assume that an optimal control u” of the optimal control problem
(OPT) exists.

o Let us denote by x*(t) the optimal state with the optimal control
u*(t), that is,

t
x*(t) £ eME + / A Dpur(t)dr, Ve [0, T].
0
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Pontryagin’s Minimum Principle (PMP)

e Assume that an optimal control u” of the optimal control problem
(OPT) exists.

o Let us denote by x*(t) the optimal state with the optimal control
u*(t), that is,

t
x*(t) £ eME + / A Dpur(t)dr, Ve [0, T].
0

@ Then there exist 1 € {0, 1} and the optimal costate p*(t) that
satisfy the following conditions:
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Pontryagin’s Minimum Principle (PMP)

(non-triviality condition) The abnormal multiplier 1 and the optimal
costate p* satisfy the non-triviality condition:

[l + [lp"lleo > 0.
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Pontryagin’s Minimum Principle (PMP)

(non-triviality condition) The abnormal multiplier 1 and the optimal
costate p* satisfy the non-triviality condition:

[l +1lp"lle > 0.
(canonical equation) The following canonical equations hold
x'(t) = Ax*(t) + bu(t),
p'(t)=-ATp'(t), Vte[0,T].

The differential equation for p(t) is called the adjoint
equation.
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Pontryagin’s Minimum Principle (PMP)

(non-triviality condition) The abnormal multiplier 1 and the optimal
costate p* satisfy the non-triviality condition:

[l +1lp"lle > 0.
(canonical equation) The following canonical equations hold

¥ () = Ax(F) + bu(t),
prt)y=-ATp*(t), Vtelo,T].

The differential equation for p(t) is called the adjoint
equation.

(minimum condition) The optimal control u*(t) minimizes
Hamiltonian at each time t € [0, T]. That is,

u'(t) = argmin H" (x*(t), p*(t),u), Vte[0,T].

lu|<1
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Pontryagin’s Minimum Principle (PMP)

(consistency) Hamiltonian satisfies
H(x*(1), p*(t), uw*(t)) = ¢, Vt€[0,T],

where c is a constant independent of . If T is not fixed (as
in the minimum-time control), then

H(x*(t),p*(t),u*(t)) =0, Vtel0,T].
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Minimum-time control

@ Dynamical system

#(t) = Ax(t) + bu(t), t>0, x(0)=&eR"
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Minimum-time control

@ Dynamical system
#(t) = Ax(t) + bu(t), t>0, x(0)=&eR"

@ Assume & € R. Then T*(&) < oo.
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Minimum-time control

e Dynamical system
#(t) = Ax(t) + bu(t), t>0, x(0)=&eR"

@ Assume & € R. Then T*(&) < oo.
@ The minimum-time cost function is

T
() = /0 L(u(t)dt, L(u)=1.
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Minimum-time control

e Dynamical system
#(t) = Ax(t) + bu(t), t>0, x(0)=&eR"
@ Assume & € R. Then T*(&) < oo.

@ The minimum-time cost function is

T
() = /0 L(u(t)dt, L(u)=1.

@ The Hamiltonian is given by

H'x,p,u) = p " (Ax + bu) + nL(u)
=p (Ax +bu)+1.
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Minimum-time control

e From Pontryagin’s minimum principle, the optimal control u*(f)
should satisfy

u*(t) = argmin H'(x*(t), p*(t), u), Vte[0,T(&)], (%)
ue[-1,1]
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Minimum-time control

e From Pontryagin’s minimum principle, the optimal control u*(f)
should satisfy

u*(t) = argmin H'(x*(t), p*(t), u), Vte[0,T(&)], (%)
ue[-1,1]

o x*(t): optimal state
o p*(t): optimal costate
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Minimum-time control
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Minimum-time control

e From Pontryagin’s minimum principle, the optimal control u*(f)

should satisfy

u*(t) = argmin H'(x*(t), p*(t), u), Vte[0,T(&)], (%)
ue[-1,1]

o x*(t): optimal state
o p*(t): optimal costate

e From (%), we have

u'(t) = argminp*(t)"bu = —sgn(p*(t)"'b),

ue[-1,1]

1, a>0
-1, a<0

sgn(a) = {

sgn(a) e [-1,1], a=0.
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@ Minimum-time control

u'(t) = —sgn(p*(t)'b),

o If p*(£)Tb = 0, then u*(t) cannot be uniquely determined.

If (A, b) is controllable, then the function p*(t)"b is not zero for almost
all t € [0, T*(&)].
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Minimum-time control

@ Minimum-time control

u'(t) = —sgn(p*(t)'b),

o If p*(£)Tb = 0, then u*(t) cannot be uniquely determined.

If (A, b) is controllable, then the function p*(t)"b is not zero for almost
all t € [0, T*(&)].

e If (A, b) is controllable, the the minimum-time control is a
piecewise constant function that takes values +1, which is called a
bang-bang control.
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e For the minimum-time control problem, we have the following
existence and uniqueness theorems.
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e For the minimum-time control problem, we have the following
existence and uniqueness theorems.

Theorem (Existence)

If the initial state & is in the controllable set R then a minimum-time control
exists.
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Minimum-time control

e For the minimum-time control problem, we have the following
existence and uniqueness theorems.

Theorem (Existence)

If the initial state & is in the controllable set R then a minimum-time control
exists.

| \

Theorem (Uniqueness)

Assume that (A, b) is controllable. Then the minimum-time control is (if it
exists) unique.
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Minimum-time control

e For the minimum-time control problem, we have the following
existence and uniqueness theorems.

Theorem (Existence)

If the initial state & is in the controllable set R then a minimum-time control
exists.

Theorem (Uniqueness)

| A\

Assume that (A, b) is controllable. Then the minimum-time control is (if it
exists) unique.

Assume that (A, b) is controllable and A is stable. Then for any & € R%, the
minimum-time control u* € U(&) uniquely exists.
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Rocket control problem

o State equation
x(t) =Ax(t)+ bu(t), t>0, =x(0)=¢&,
where x(t) = [r(t), 7(t)] ", u(t) = F(t), and

el g2

| m  F(t) .
| >

r(0) = & rocket

7;(0) =& T(t)? f(t)
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Rocket control problem

o State equation
x(t) =Ax(t)+ bu(t), t>0, =x(0)=¢&,
where x(t) = [r(t), 7(t)] ", u(t) = F(t), and

o[y i

e Since (A, b) is controllable and A is stable (the eigs are 0, 0), there
uniquely exists the minimum-time control u*(t) for any initial

state & € R?.
F(t
| m o F(t) i
| -
r(0) =& rocket

7;(0) =& T(t)? f(t)
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Minimum-time control of rocket

@ The Hamiltonian for the minimum-time control is given by

H'x,p,u) = pT(Ax + bu) + 1= p1xa + pou + 1.
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Minimum-time control of rocket

@ The Hamiltonian for the minimum-time control is given by
H'(x,p,u) =p (Ax + bu) + 1 = p1xa + pau + 1.
@ The optimal control is given by
u*(t) = —sgn(p*(t)Tb) = —sgn(p(t)).

where p*(t) = [p](t), p5(t)]" is the optimal costate.
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Minimum-time control of rocket

@ The Hamiltonian for the minimum-time control is given by
H'(x,p,u) =p (Ax + bu) + 1 = p1xa + pau + 1.
@ The optimal control is given by
u*(t) = —sgn(p*(t)Tb) = —sgn(p(t)).

where p*(t) = [p](t), p5(t)]" is the optimal costate.

e From the canonical equation, p;(t) is a linear function given by

p5(t) = mp — myt.
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Optimal costate p3(t)

X u* (t) %@‘)
t T2 t
0 0
—1
T2 KE(U U* (t)
(i) (if)
. . u*(t)
P t 0 pa(t) ¢
0 p; (t) T2
-1 1
u”(t)
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Minimum-time control

@ The minimum-time control is bang-bang:
1/ lf x(t) € ‘}/+ U R+ \ {0}/
u*(t) =9-1, if x(f) e y_UR_\ {0},
0, if x(t)=0.

v =7+ Uy- |72

V= R_

X1

T+
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Minimum-time control

@ The minimum-time control is bang-bang:
1/ lf x(t) € ‘}/+ U R+ \ {0}/
u*(t) =9-1, if x(f) e y_UR_\ {0},
0, if x(t)=0.

v =7+ Uy- |72

V= R_

X1

Ry

T+

@ The curve y = y, U y_is called the switching curve.
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Conclusion

e A dynamical system is modeled by a differential equation called
the state-space equation.
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Conclusion

e A dynamical system is modeled by a differential equation called
the state-space equation.

e We cannot control uncontrollable systems.

e Optimal control is the best control among feasible controls for a
controllable system.

e Minimum-time control becomes bang-bang when the system is
controllable.
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