Sparsity Methods for Systems and Control What is Sparsity?

Masaaki Nagahara¹

¹The University of Kitakyushu nagahara@ieee.org

Table of Contents

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The ℓ^0 Norm
- Exhaustive Search

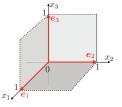
Table of Contents

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The ℓ^0 Norm
- 4 Exhaustive Search

Standard basis for \mathbb{R}^3

• Standard basis $\{e_1, e_2, e_3\}$:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$



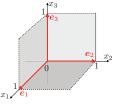
• Any vector $y \in \mathbb{R}^3$ can be represented as

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 e_1 + y_2 e_2 + y_3 e_3$$

Standard basis for \mathbb{R}^3

• Standard basis $\{e_1, e_2, e_3\}$:

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$



• Any vector $y \in \mathbb{R}^3$ can be represented as

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 e_1 + y_2 e_2 + y_3 e_3.$$

General basis for \mathbb{R}^3

- Any three linearly independent vectors ϕ_1 , ϕ_2 , and ϕ_3 in \mathbb{R}^3 form a basis for \mathbb{R}^3 .
- Any vector $y \in \mathbb{R}^3$ can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients β_1 , β_2 , β_3 are uniquely determined.

General basis for \mathbb{R}^3

- Any three linearly independent vectors ϕ_1 , ϕ_2 , and ϕ_3 in \mathbb{R}^3 form a basis for \mathbb{R}^3 .
- Any vector $y \in \mathbb{R}^3$ can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients β_1 , β_2 , β_3 are uniquely determined.

General basis for \mathbb{R}^3

- Any three linearly independent vectors ϕ_1 , ϕ_2 , and ϕ_3 in \mathbb{R}^3 form a basis for \mathbb{R}^3 .
- Any vector $y \in \mathbb{R}^3$ can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients β_1 , β_2 , β_3 are uniquely determined.

• Three linearly independent vectors:

$$\phi_1 = e_1 + e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \phi_2 = e_2 + e_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \phi_3 = e_3 + e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

• Set of 6 vectors (redundant basis)

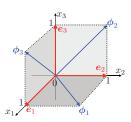
$$\{e_1, e_2, e_3, \phi_1, \phi_2, \phi_3\}$$

• Three linearly independent vectors:

$$\phi_1 = e_1 + e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \phi_2 = e_2 + e_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \phi_3 = e_3 + e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Set of 6 vectors (redundant basis)

$$\{e_1, e_2, e_3, \phi_1, \phi_2, \phi_3\}$$



• For a vector $y \in \mathbb{R}^3$, we want a signal representation (redundant representation):

$$y = \sum_{i=1}^{3} \alpha_i e_i + \sum_{i=1}^{3} \beta_i \phi_i.$$

• There are infinitely many solutions for α_i and β_i (i = 1, 2, 3)

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (y_1, y_2, y_3, 0, 0, 0),$$

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (-y_3, -y_1, -y_2, y_1, y_2, y_3)$$

• For a vector $y \in \mathbb{R}^3$, we want a signal representation (redundant representation):

$$\boldsymbol{y} = \sum_{i=1}^{3} \alpha_{i} \boldsymbol{e}_{i} + \sum_{i=1}^{3} \beta_{i} \boldsymbol{\phi}_{i}.$$

• There are infinitely many solutions for α_i and β_i (i = 1, 2, 3).

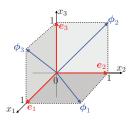
$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (y_1, y_2, y_3, 0, 0, 0),$$

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (-y_3, -y_1, -y_2, y_1, y_2, y_3).$$

- A vector $y = (1, 1, 1)^{T}$ on the plane spanned by e_1 and ϕ_2 .
- A coefficient set is obtained as

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (1, 0, 0, 0, 1, 0).$$

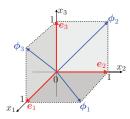
This is a sparse representation of $y = (1, 1, 1)^{\top}$ since it contains many zeros.



- A vector $y = (1, 1, 1)^{T}$ on the plane spanned by e_1 and ϕ_2 .
- A coefficient set is obtained as

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (1, 0, 0, 0, 1, 0).$$

This is a sparse representation of $y = (1, 1, 1)^T$ since it contains many zeros.



• How do you explain this picture by using words in a small dictionary that does not have the word "elephant"?

- A set of vectors $\{\phi_1, \phi_2, \dots, \phi_n\}$ in \mathbb{R}^m .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements $\phi_1, \phi_2, \dots, \phi_n$ in the dictionary is called **atoms** (not "words").
- For a vector $y \in \mathbb{R}^m$, we find coefficients $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors $\{\phi_1, \phi_2, \dots, \phi_n\}$ in \mathbb{R}^m .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements $\phi_1, \phi_2, \dots, \phi_n$ in the dictionary is called **atoms** (not "words").
- For a vector $y \in \mathbb{R}^m$, we find coefficients $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors $\{\phi_1, \phi_2, \dots, \phi_n\}$ in \mathbb{R}^m .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements $\phi_1, \phi_2, \dots, \phi_n$ in the dictionary is called atoms (not "words").
- For a vector $y \in \mathbb{R}^m$, we find coefficients $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors $\{\phi_1, \phi_2, \dots, \phi_n\}$ in \mathbb{R}^m .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements $\phi_1, \phi_2, \dots, \phi_n$ in the dictionary is called atoms (not "words").
- For a vector $y \in \mathbb{R}^m$, we find coefficients $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

- A set of vectors $\{\phi_1, \phi_2, \dots, \phi_n\}$ in \mathbb{R}^m .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements $\phi_1, \phi_2, \dots, \phi_n$ in the dictionary is called atoms (not "words").
- For a vector $y \in \mathbb{R}^m$, we find coefficients $\alpha_1, \alpha_2, \dots, \alpha_n$ such that

$$y = \sum_{i=1}^{n} \alpha_i \phi_i.$$

• Define a matrix Φ and a vector x as

$$\Phi \triangleq \begin{bmatrix} \boldsymbol{\phi}_1 & \boldsymbol{\phi}_2 & \dots & \boldsymbol{\phi}_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

ullet The matrix Φ is called a dictionary matrix or measurement matrix

• Define a matrix Φ and a vector x as

$$\Phi \triangleq \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

• The matrix Φ is called a dictionary matrix or measurement matrix

• Define a matrix Φ and a vector x as

$$\Phi \triangleq \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

ullet The matrix Φ is called a dictionary matrix or measurement matrix.

The problem of sparse representation

Problem (Sparse Representation)

Given a vector $y \in \mathbb{R}^m$ and a dictionary matrix $\Phi \in \mathbb{R}^{m \times n}$ with m < n. Find the simplest (i.e. sparsest) representation of y that satisfies

$$y = \Phi x$$
.

ullet This problem is also known as compressed sensing, where Φ models an oversampling sensor.

The problem of sparse representation

Problem (Sparse Representation)

Given a vector $y \in \mathbb{R}^m$ and a dictionary matrix $\Phi \in \mathbb{R}^{m \times n}$ with m < n. Find the simplest (i.e. sparsest) representation of y that satisfies

$$y = \Phi x$$
.

• This problem is also known as compressed sensing, where Φ models an oversampling sensor.

Table of Contents

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The ℓ^0 Norm
- 4 Exhaustive Search

• linear equations with unknowns x_1 , x_2 , and x_3 :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
, $x_2 = -2t + 3$, $x_3 = t$,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns x_1 , x_2 , and x_3 :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
, $x_2 = -2t + 3$, $x_3 = t$,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns x_1 , x_2 , and x_3 :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
, $x_2 = -2t + 3$, $x_3 = t$,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns x_1 , x_2 , and x_3 :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
, $x_2 = -2t + 3$, $x_3 = t$,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns x_1 , x_2 , and x_3 :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
, $x_2 = -2t + 3$, $x_3 = t$,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The ℓ^2 -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$

= $t^2 + (-2t + 3)^2 + t^2$
= $6(t - 1)^2 + 3$.

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The ℓ^2 -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The ℓ^2 -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The ℓ^2 -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The ℓ^2 -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$

= $t^2 + (-2t + 3)^2 + t^2$
= $6(t - 1)^2 + 3$.

is minimized by t = 1.

$$\Phi x = y$$
.

- Φ is an $m \times n$ matrix where m < n (we call this a fat matrix).
- Assume Φ has full row rank, that is,

$$\operatorname{rank}(\Phi) = m.$$

- For any vector $y \in \mathbb{R}^m$, there exists at least one solution x that satisfies $\Phi x = y$.
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- Φ is an $m \times n$ matrix where m < n (we call this a fat matrix).
- Assume Φ has full row rank, that is,

$$rank(\Phi) = m.$$

- For any vector $y \in \mathbb{R}^m$, there exists at least one solution x that satisfies $\Phi x = y$.
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- Φ is an $m \times n$ matrix where m < n (we call this a fat matrix).
- Assume Φ has full row rank, that is,

$$rank(\Phi) = m$$
.

- For any vector $y \in \mathbb{R}^m$, there exists at least one solution x that satisfies $\Phi x = y$.
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- Φ is an $m \times n$ matrix where m < n (we call this a fat matrix).
- Assume Φ has full row rank, that is,

$$\operatorname{rank}(\Phi)=m.$$

- For any vector $y \in \mathbb{R}^m$, there exists at least one solution x that satisfies $\Phi x = y$.
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- Φ is an $m \times n$ matrix where m < n (we call this a fat matrix).
- Assume Φ has full row rank, that is,

$$\operatorname{rank}(\Phi)=m.$$

- For any vector $y \in \mathbb{R}^m$, there exists at least one solution x that satisfies $\Phi x = y$.
- In fact, there are infinitely many solutions.

Table of Contents

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The ℓ^0 Norm
- 4 Exhaustive Search

Norm

A norm in \mathbb{R}^n should satisfy

- For any vector $x \in \mathbb{R}^n$ and any number $\alpha \in \mathbb{R}$, $||\alpha x|| = |\alpha|||x||$.
- ② For any $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.
- - The ℓ^2 norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The ℓ^1 norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Norm

A norm in \mathbb{R}^n should satisfy

- For any vector $x \in \mathbb{R}^n$ and any number $\alpha \in \mathbb{R}$, $\|\alpha x\| = |\alpha| \|x\|$.
- ② For any $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.
- **3** $||x|| = 0 \iff x = 0.$
 - The ℓ^2 norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The ℓ^1 norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \ldots, |x_n|\}$$

Norm

A norm in \mathbb{R}^n should satisfy

- For any vector $x \in \mathbb{R}^n$ and any number $\alpha \in \mathbb{R}$, $\|\alpha x\| = |\alpha| \|x\|$.
- ② For any $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.
- **3** $||x|| = 0 \iff x = 0.$
 - The ℓ^2 norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The ℓ^1 norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$|x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Norm

A norm in \mathbb{R}^n should satisfy

- For any vector $x \in \mathbb{R}^n$ and any number $\alpha \in \mathbb{R}$, $\|\alpha x\| = |\alpha| \|x\|$.
- ② For any $x, y \in \mathbb{R}^n$, $||x + y|| \le ||x|| + ||y||$.
- **3** $||x|| = 0 \iff x = 0.$
 - The ℓ^2 norm (or Euclidean norm)

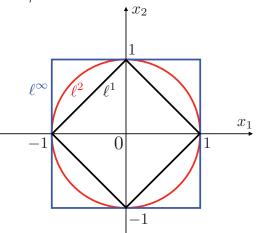
$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The ℓ^1 norm

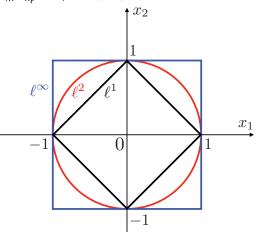
$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

Contour curves ($||x||_p = 1$) of ℓ^1 , ℓ^2 , ℓ^∞ norms.



Contour curves ($||x||_p = 1$) of ℓ^1 , ℓ^2 , ℓ^∞ norms.



- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\mathsf{T}} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

supp is the support of x, namely,

$$supp(x) \triangleq \{i \in \{1, 2, ..., n\} : x_i \neq 0\},\$$

I - I denotes the number of elements.

- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0$$

- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

$$supp(x) \triangleq \{i \in \{1, 2, ..., n\} : x_i \neq 0\},\$$

- | · | denotes the number of elements.
- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$

- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- | · | denotes the number of elements.
- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$

- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- $|\cdot|$ denotes the number of elements.
- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$

- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- $|\cdot|$ denotes the number of elements.
- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$

- Consider a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$.
- The ℓ^0 norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- | · | denotes the number of elements.
- The ℓ^0 norm counts the number of non-zero elements in x.
- The ℓ^0 norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the ℓ^0 pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$

ℓ^0 optimization problem

Now the problem of sparse representation is formulated as follows:

ℓ^0 optimization problem

Given a vector $y \in \mathbb{R}^m$ and a full-row-rank matrix $\Phi \in \mathbb{R}^{m \times n}$ with m < n. Find the optimizer x^* of the optimization problem:

minimize
$$||x||_0$$
 subject to $y = \Phi x$.

This problem is called the ℓ^0 optimization.

Table of Contents

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The ℓ^0 Norm
- Exhaustive Search

How to solve it?

ℓ^0 optimization problem

Given a vector $y \in \mathbb{R}^m$ and a full-row-rank matrix $\Phi \in \mathbb{R}^{m \times n}$ with m < n. Find the optimizer x^* of the optimization problem:

minimize
$$||x||_0$$
 subject to $y = \Phi x$.

• We can try an exhaustive search for this optimization.

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.

- If (0, 0, x₂) is a solution, then x₂ = 3 and x₂ = 0. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
- If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - (a) If $(0,0,x_3)$ is a solution, then $x_3=3$ and $x_3=0$. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
 - ① If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - ② If $(0, x_2, 0)$ is a solution, then $x_2 = 3$. This is a solution.
 - ① If $(0, 0, x_3)$ is a solution, then $x_3 = 3$ and $x_3 = 0$. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
 - If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - ② If $(0, x_2, 0)$ is a solution, then $x_2 = 3$. This is a solution.
 - ① If $(0, 0, x_3)$ is a solution, then $x_3 = 3$ and $x_3 = 0$. This is not a solution.
- ullet The solution to the ℓ^0 optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
 - If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - ② If $(0, x_2, 0)$ is a solution, then $x_2 = 3$. This is a solution.
 - ③ If $(0, 0, x_3)$ is a solution, then $x_3 = 3$ and $x_3 = 0$. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
 - If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - ② If $(0, x_2, 0)$ is a solution, then $x_2 = 3$. This is a solution.
 - If $(0, 0, x_3)$ is a solution, then $x_3 = 3$ and $x_3 = 0$. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try $(x_1, x_2, x_3) = (0, 0, 0)$. This is not a solution.
- Second, try $(x_1, 0, 0)$, $(0, x_2, 0)$, and $(0, 0, x_3)$.
 - If $(x_1, 0, 0)$ is a solution, then $x_1 = 3$ and $x_1 = 0$. This is not a solution.
 - ② If $(0, x_2, 0)$ is a solution, then $x_2 = 3$. This is a solution.
 - If $(0, 0, x_3)$ is a solution, then $x_3 = 3$ and $x_3 = 0$. This is not a solution.
- The solution to the ℓ^0 optimization is (0,3,0).

- If y = 0, then output $x^* = 0$ as the optimal solution and quit.
- Otherwise, proceed to the next step.

• Find a vector x with $||x||_0 = 1$ that satisfies the equation $y = \Phi x$. That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search $x_i \in \mathbb{R}$ (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

If a solution exists for some i, output $x^* = x_i$ as the solution and quit.

• Find a vector x with $||x||_0 = 1$ that satisfies the equation $y = \Phi x$. That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search $x_i \in \mathbb{R}$ (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

 If a solution exists for some i, output x* = xi as the solution and quit.

• Find a vector x with $||x||_0 = 1$ that satisfies the equation $y = \Phi x$. That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search $x_i \in \mathbb{R}$ (i = 1, 2, ..., n) that satisfies

$$\boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x}_i = \boldsymbol{x}_i \boldsymbol{\phi}_i.$$

- If a solution exists for some i, output $x^* = x_i$ as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with $||x||_0 = 1$ that satisfies the equation $y = \Phi x$. That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search $x_i \in \mathbb{R}$ (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

- If a solution exists for some i, output $x^* = x_i$ as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with $||x||_0 = 1$ that satisfies the equation $y = \Phi x$. That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search $x_i \in \mathbb{R}$ (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

- If a solution exists for some i, output $x^* = x_i$ as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with $||x||_0 = 2$ that satisfies the equation $y = \Phi x$. That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search $x_i, x_j \in \mathbb{R}$ (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

• If a solution exists for some i, j, then output $x' = x_{i,j}$ and quit.

• Find a vector x with $||x||_0 = 2$ that satisfies the equation $y = \Phi x$. That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search $x_i, x_j \in \mathbb{R}$ (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

• If a solution exists for some i, j, then output $x^* = x_{i,j}$ and quit.

Exhaustive Search (step 3)

• Find a vector x with $||x||_0 = 2$ that satisfies the equation $y = \Phi x$. That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search $x_i, x_j \in \mathbb{R}$ (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output $x^* = x_{i,j}$ and quit.
- Otherwise, proceed the next step.

Exhaustive Search (step 3)

• Find a vector x with $||x||_0 = 2$ that satisfies the equation $y = \Phi x$. That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search $x_i, x_j \in \mathbb{R}$ (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output $x^* = x_{i,j}$ and quit.
- Otherwise, proceed the next step.

Exhaustive Search (step 3)

• Find a vector x with $||x||_0 = 2$ that satisfies the equation $y = \Phi x$. That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search $x_i, x_j \in \mathbb{R}$ (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output $x^* = x_{i,j}$ and quit.
- Otherwise, proceed the next step.

Exhaustive Search (step *k*)

• Do similar procedures for $||x||_0 = k, k = 3, 4, ..., m$.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size *m*.
- Suppose m = 100.
 - Then it roughly takes 2°°° > 1.3 × 10°° devalues (in the worst).
 If we can do one ileration in 10°° seconds (by a super computer), then we obtain the solution after 1.3 × 10°° seconds, or 30 million (1.3 × 10°°).
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.

- The study of sparse representation is to solve such a big proble
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
 - Then it roughly takes $2^{100} \approx 1.3 \times 10^{30}$ iterations (at the worst).
 - If we can do one iteration in 10^{-15} seconds (by a super computer).
 - then we obtain the solution after 1.3×10^{15} seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
 - Then it roughly takes $2^{100} \approx 1.3 \times 10^{30}$ iterations (at the worst).
 - If we can do one iteration in 10^{-15} seconds (by a super computer),
 - then we obtain the solution after 1.3×10^{15} seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
 - Then it roughly takes $2^{100} \approx 1.3 \times 10^{30}$ iterations (at the worst).
 - If we can do one iteration in 10^{-15} seconds (by a super computer),
 - then we obtain the solution after 1.3×10^{15} seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
 - Then it roughly takes $2^{100} \approx 1.3 \times 10^{30}$ iterations (at the worst).
 - If we can do one iteration in 10^{-15} seconds (by a super computer),
 - then we obtain the solution after 1.3×10^{15} seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
 - Then it roughly takes $2^{100} \approx 1.3 \times 10^{30}$ iterations (at the worst).
 - If we can do one iteration in 10^{-15} seconds (by a super computer),
 - then we obtain the solution after 1.3×10^{15} seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- ullet Sparsity of a vector is measured by its ℓ^0 norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector (ℓ^0 optimization).
- The exhaustive search to solve ℓ^0 optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its ℓ^0 norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector (ℓ^0 optimization).
- The exhaustive search to solve ℓ^0 optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its ℓ^0 norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector (ℓ^0 optimization).
- The exhaustive search to solve ℓ^0 optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its ℓ^0 norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector (ℓ^0 optimization).
- The exhaustive search to solve ℓ^0 optimization requires computational time that exponentially increases as the problem size increases.