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Standard basis for R3

e Standard basis {eq, e, e3}:
1 0 0
e;=|0{, ex=|1], e3=10]f.
0 0 1
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Standard basis for R3

e Standard basis {eq, e, e3}:

1 0 0
3120,62:1,63:0-
0 0 1
e
181 ,,,,,,,,,,,,,,,,,,,,,

e Any vector y € R3 can be represented as

n
Yy =1Y2| = Yyie1 + Yren + Yzes.
Y3
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General basis for R3

o Any three linearly independent vectors ¢, ¢,, and ¢, in R? form
a basis for R>.
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General basis for R3

o Any three linearly independent vectors ¢, ¢,, and ¢, in R? form
a basis for R>.

e Any vector y € R3 can be represented as

Yy = P19, + pag, + 3¢,
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General basis for R3

o Any three linearly independent vectors ¢, ¢,, and ¢, in R? form
a basis for R>.

e Any vector y € R3 can be represented as

Yy = P19, + pag, + 3¢,

@ The coefficients f1, B2, B3 are uniquely determined.
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Redundant basis

@ Three linearly independent vectors:

1 0 1
¢p,=ertex=|1|, ¢p,=ex+te3=|1|, py=e3+e;=10].
0 1 1
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Redundant basis

@ Three linearly independent vectors:

1 0 1
¢p,=ertex=|1|, ¢p,=ex+te3=|1|, py=e3+e;=10].
0 1 1
@ Set of 6 vectors (redundant basis)
{elr es,es, (,blz (Pzr ‘,b3}
17:5 o
P
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Redundant basis

e For a vector y € R3, we want a signal representation (redundant
representation):

w
W
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Redundant basis

e For a vector y € R3, we want a signal representation (redundant

representation):
3 3
y= Z aie; + Z pig;.
i=1 i=1

@ There are infinitely many solutions for a; and ; (i = 1,2, 3).
(a1, az, a3, B1, B2, B3) = (y1, Y2, ¥3,0,0,0),

(all az, as, ,Blr ,62/ ,83) = (_yS/ —Y1,~Y2, Y1, Y2, y3)
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Sparse representation

e Avector y =(1,1,1)" on the plane spanned by e; and ¢,.

3

T2
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Sparse representation

e Avector y =(1,1,1)" on the plane spanned by e; and ¢,.

o A coefficient set is obtained as

(a1, a2, a3, B1,B2,B3) =(1,0,0,0,1,0).

This is a sparse representation of y = (1,1, 1)T since it contains
many zeros.

3

T2
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Redundant dictionar

e How do you explain this picture by using words in a small
dictionary that does not have the word "elephant"?
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Redundant dictionary

o A setof vectors {¢, ¢,,..., ¢, } inR™.
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Redundant dictionary

o A setof vectors {¢, ¢,,..., ¢, } inR™.

e If m < n and m vectors in this set are linearly independent, then
this is called a redundant dictionary.
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Redundant dictionary

o A setof vectors {¢, ¢,,..., ¢, } inR™.

e If m < n and m vectors in this set are linearly independent, then
this is called a redundant dictionary.

o The elements ¢, ¢,, ..., ¢, in the dictionary is called atoms (not
“words”).
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Redundant dictionary

e A setof vectors {¢,, §,,..., P, }inR™.

e If m < n and m vectors in this set are linearly independent, then
this is called a redundant dictionary.

o The elements ¢, ¢,, ..., ¢, in the dictionary is called atoms (not
“words”).

e For a vector y € R", we find coefficients a1, ay, . .., @, such that

n
y= Z aig;.
i=1
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Redundant dictionary

A set of vectors {¢, ¢, ..., P, } inR™.

If m < n and m vectors in this set are linearly independent, then
this is called a redundant dictionary.

The elements ¢, ¢,, ..., ¢, in the dictionary is called atoms (not
“words”).

e For a vector y € R", we find coefficients a1, ay, . .., @, such that

n
y= Z aig;.
i=1

o If the dictionary is more redundant, then we may obtain a sparser
coefficient set.
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Sparse representation

@ Define a matrix ® and a vector x as
aq
a
[P, P, ... ¢,| R, x2| "I R

(277}
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Sparse representation

@ Define a matrix ® and a vector x as
aq
[2%)
(P, P, ... ¢, | R, x| "R
(227
@ Then the relation
n
y= Z aip;.
i=1
is compactly rewritten as

y = Ox.
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Sparse representation

@ Define a matrix ® and a vector x as
aq
[2%)
(P, P, ... ¢, | R, x| "R
(227
@ Then the relation
n
y= Z aip;.
i=1
is compactly rewritten as

y = Ox.

@ The matrix @ is called a dictionary matrix or measurement matrix.
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The problem of sparse representation

Problem (Sparse Representation)

Given a vector y € R” and a dictionary matrix @ € R™*" with m < n.
Find the simplest (i.e. sparsest) representation of y that satisfies

y = Ox.
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The problem of sparse representation

Problem (Sparse Representation)

Given a vector y € R” and a dictionary matrix @ € R™*" with m < n.
Find the simplest (i.e. sparsest) representation of y that satisfies

y = Ox.

@ This problem is also known as compressed sensing, where ®
models an oversampling sensor.
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Linear equations

@ linear equations with unknowns x1, x, and x3:

X1+x2+x3=3
xl—X3=0
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Linear equations

@ linear equations with unknowns x1, x, and x3:

X1+x2+x3=3
xl—X3=0

@ There are infinitely many solutions
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Linear equations

@ linear equations with unknowns x1, x, and x3:
X1+x2+x3=3
X1 — X3 = 0

@ There are infinitely many solutions

e All solutions
x1=1t, xp=-2t+3, x3=t,

where t € R is a parameter.
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Linear equations

@ linear equations with unknowns x1, x, and x3:

X1+x2+x3=3
xl—X3:0

@ There are infinitely many solutions

e All solutions
x1=1t, xp=-2t+3, x3=t,

where t € R is a parameter.

@ Such a system of equations is called an underdetermined system.
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Linear equations

linear equations with unknowns x1, x, and x3:

X1+x2+x3=3
xl—X3:0

There are infinitely many solutions

All solutions

x1=1t, xp=-2t+3, x3=t,

where t € R is a parameter.

Such a system of equations is called an underdetermined system.

How can we specify one unique vector among these?
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Minimum solution

@ Let us consider a detective, like Edogawa Conan?, who solve this
problem.

1See: https://en.wikipedia.org/wiki/Case_Closed
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Minimum solution

@ Let us consider a detective, like Edogawa Conan?, who solve this
problem.

e The two proofs (equations) are insufficient and he should seek one
more independent proof.

1See: https://en.wikipedia.org/wiki/Case_Closed
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Minimum solution

@ Let us consider a detective, like Edogawa Conan?, who solve this
problem.

e The two proofs (equations) are insufficient and he should seek one
more independent proof.

o If he gets one more proof saying the criminal is the smallest one
among the suspects.

1See: https://en.wikipedia.org/wiki/Case_Closed
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Minimum solution

@ Let us consider a detective, like Edogawa Conan?, who solve this
problem.

e The two proofs (equations) are insufficient and he should seek one
more independent proof.

o If he gets one more proof saying the criminal is the smallest one
among the suspects.

e The {>-norm
%17 = x2 + x3 + x3
=12+ (=2t +3)> + 2
=6(t —1)* + 3.

is minimized by ¢ = 1.

1See: https://en.wikipedia.org/wiki/Case_Closed
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Minimum solution

@ Let us consider a detective, like Edogawa Conan?, who solve this
problem.

e The two proofs (equations) are insufficient and he should seek one
more independent proof.

o If he gets one more proof saying the criminal is the smallest one
among the suspects.

o The £>-norm
%17 = x2 + x3 + x3
=12+ (=2t +3)> + 2
=6(t —1)* + 3.
is minimized by ¢ = 1.

@ The unique solution is (x1,x2, x3) = (1,1, 1).

1See: https://en.wikipedia.org/wiki/Case_Closed
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Linear equations in matrix form

e Linear equations in a matrix form:

Dx =y.
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Linear equations in matrix form

e Linear equations in a matrix form:
Dx =y.

o ®isan m X n matrix where m < n (we call this a fat matrix).
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Linear equations in matrix form

e Linear equations in a matrix form:
Dx =y.

o ®isan m X n matrix where m < n (we call this a fat matrix).

@ Assume O has full row rank, that is,

rank(®) = m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 16 / 31



Linear equations in matrix form

e Linear equations in a matrix form:
Dx =y.

o ®isan m X n matrix where m < n (we call this a fat matrix).

@ Assume O has full row rank, that is,
rank(®) = m.

e For any vector y € R", there exists at least one solution x that
satisfies ®x = y.
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Linear equations in matrix form

e Linear equations in a matrix form:

Dx =y.

@ is an m X n matrix where m < n (we call this a fat matrix).

Assume O has full row rank, that is,
rank(®) = m.

e For any vector y € R", there exists at least one solution x that
satisfies ®x = y.

In fact, there are infinitely many solutions.
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Norms in R”

A norm in R" should satisfy

© For any vector x € R" and any number a € R, |lax|| = |a|||x]|.
@ Forany x,y € R", [Ix + yl| < |lx|| + [ly]l.
Q |x]|=0 & x=0.
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Norms in R”

A norm in R" should satisfy

© For any vector x € R” and any number a € R, |[ax|| = |a|||x]|.
@ Forany x,y € R", [Ix + yll < |lx|| + [ly]l.
Q |x]|=0 & x=0.

@ The ¢? norm (or Euclidean norm)

A 2 2 2
el 2 (32 + o2+ a2,
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Norms in R”

A norm in R" should satisfy

© For any vector x € R” and any number a € R, |[ax|| = |a|||x]|.
@ Forany x,y €R”, [lx + yll < |lx]| + [lyll.
Q |x]|=0 & x=0.

e The ¢? norm (or Euclidean norm)

A 2 2 2
el 2 32 + a2 4o+ 2.

e The ¢! norm
lxfly = [x1] + [x2] + ...+ [xn].
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Norms in R”

A norm in R" should satisfy

© For any vector x € R” and any number a € R, |[ax|| = |a|||x]|.
@ Forany x,y €R”, [lx + yll < |lx]| + [lyll.
Q |x]|=0 & x=0.

e The ¢? norm (or Euclidean norm)

el 2 32 + a2 4o+ 2.
e The (! norm

llxll = Joxa] + [x2] + ...+ [xn].
@ The £*° norm (or maximum norm)

Ixlleo = max{|x1l, [x2l, ..., [xnl}
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Norms in R”

Contour curves (||x[|, = 1) of ¢!, £2, £~ norms.
T2

—_

e\ /0 /¢t

X1

19 /31
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Norms in R”

Contour curves (||x[|, = 1) of ¢!, £2, £~ norms.
T2

—_

e\ /0 /¢t

X1
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
e The (” norm of x is defined by

lIxllo = Isupp(x)],

where
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
e The (” norm of x is defined by
llxllo = [supp(x)l,

where
e supp is the support of x, namely,

supp(x) = {i €{1,2,...,n}:x; # 0},
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
e The (” norm of x is defined by
llxllo = [supp(x)l,

where
e supp is the support of x, namely,

supp(x) = {i €{1,2,...,n}:x; # 0},

e |- | denotes the number of elements.
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
e The (” norm of x is defined by
llxllo = [supp(x)l,

where
e supp is the support of x, namely,

supp(x) = {i €{1,2,...,n}:x; # 0},
e |- | denotes the number of elements.

@ The ¢° norm counts the number of non-zero elements in x.
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£9 norm

e Consider a vector x = [x1,x2,...,x,]" € R".
e The (” norm of x is defined by

lIxllo = Isupp(x)],

where
e supp is the support of x, namely,

supp(x) = {i €{1,2,...,n}:x; # 0},
e |- | denotes the number of elements.

@ The ¢° norm counts the number of non-zero elements in x.

o The ¢° norm does not satisfy the first property in the definition of
norm, and it is sometimes called the ¢° pseudo-norm.

[12x[lo = llxllo # 2[lx[lo-
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0 optimization problem

Now the problem of sparse representation is formulated as follows:

¢V optimization problem

Given a vector y € R™ and a full-row-rank matrix ® € R™*" with
m < n. Find the optimizer x* of the optimization problem:

minimize ||x|p subjectto y = Dx.
xeR”

This problem is called the ¢’ optimization.
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How to solve it?

Y optimization problem

Given a vector y € R™ and a full-row-rank matrix ® € R"™*" with
m < n. Find the optimizer x* of the optimization problem:

minimize ||x|lp subjectto y = dx.
xeR"

@ We can try an exhaustive search for this optimization.
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
@ Second, try (x1,0,0), (0, x2,0), and (0, 0, x3).
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
@ Second, try (x1,0,0), (0, x2,0), and (0, 0, x3).

@ If (x1,0,0) is a solution, then x; = 3 and x; = 0. This is not a
solution.
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
@ Second, try (x1,0,0), (0, x2,0), and (0, 0, x3).
@ If (x1,0,0) is a solution, then x; = 3 and x; = 0. This is not a
solution.
@ If (0, x5, 0) is a solution, then x, = 3. This is a solution.
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
@ Second, try (x1,0,0), (0, x2,0), and (0, 0, x3).
@ If (x1,0,0) is a solution, then x; = 3 and x; = 0. This is not a
solution.
@ If (0, x5, 0) is a solution, then x, = 3. This is a solution.
@ If (0,0, x3) is a solution, then x3 = 3 and x3 = 0. This is not a
solution.
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Exhaustive search: example

e Find the minimum-£° solution (x1, X2, x3) that satisfies

X1+xp+x3=3

xl—X3:O

e First, try (x1, x2, x3) = (0,0,0). This is not a solution.
@ Second, try (x1,0,0), (0, x2,0), and (0, 0, x3).
@ If (x1,0,0) is a solution, then x; = 3 and x; = 0. This is not a
solution.
@ If (0, x5, 0) is a solution, then x, = 3. This is a solution.
@ If (0,0, x3) is a solution, then x3 = 3 and x3 = 0. This is not a
solution.

e The solution to the ¢ optimization is (0, 3, 0).
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Exhaustive Search (step 1)

o If y = 0, then output x* = 0 as the optimal solution and quit.
o Otherwise, proceed to the next step.
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Exhaustive Search (step 2)

e Find a vector x with ||x||p = 1 that satisfies the equation y = ®x.
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Exhaustive Search (step 2)

e Find a vector x with ||x||p = 1 that satisfies the equation y = ®x.
That is, set

X1 X 0

0 .

xl = 7 xZ é 0 ’ 7 xn é :
. 0

0 0 Xn
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Exhaustive Search (step 2)

e Find a vector x with ||x||p = 1 that satisfies the equation y = ®x.

That is, set
X1 0 0
X2
A 0 A 0 A :
X1 = ; X2 = ’ ; Xn ="
: "o
0 0 Xn

and search x; e R (i = 1,2, ..., n) that satisfies

y =Ox; = x;P;.
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Exhaustive Search (step 2)

e Find a vector x with ||x||p = 1 that satisfies the equation y = ®x.

That is, set
0
X1 0
X2
A 0 A 0 A :
X1 = ; X2 = ’ ; Xn ="
; o
0 0 Xy
and search x; e R (i = 1,2, ..., n) that satisfies
y =Ox; = x;P;.
o If a solution exists for some 7, output x* = x; as the solution and

quit.
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Exhaustive Search (step 2)

e Find a vector x with ||x||p = 1 that satisfies the equation y = ®x.

That is, set
0
X1 0
X2
A 0 A 0 A :
X1 = ; X2 = ’ ; Xn ="
; o
0 0 Xy
and search x; e R (i = 1,2, ..., n) that satisfies
y =Ox; = x;P;.
o If a solution exists for some 7, output x* = x; as the solution and

quit.
e Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods



Exhaustive Search (step 3)

e Find a vector x with ||x||p = 2 that satisfies the equation y = ®x.
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Exhaustive Search (step 3)

e Find a vector x with ||x||p = 2 that satisfies the equation y = ®x.

That is, set
e
X1 01 0
X
A 02 A X3 A )
X1,2 = ; X13=(0|s-s Xn-1n=1| 0
: Xn-1
0 : x
| 0] !
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Exhaustive Search (step 3)

e Find a vector x with ||x||p = 2 that satisfies the equation y = ®x.

That is, set
e
X1 01 0
X
2 23 :
210 A A
X12 = ; X1,3 = Ofr---~ Xn-1n = 0
: Xn-1

0 : Xn

10

and search x;, x; € R (i,j =1,2,...,n) that satisfies

y = (Dxi,]' = xi¢i + x]'(i)]-.
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Exhaustive Search (step 3)

e Find a vector x with ||x||p = 2 that satisfies the equation y = ®x.

That is, set
e
X1 01 0
X
2 23 :
210 A A
X12 = ; X1,3 = Ofr---~ Xn-1n = 0
: Xn-1

0 : Xn

| O]
and search x;, x; € R (i,j =1,2,...,n) that satisfies
y = (Dxi,]' = xi¢i + x]'(i)]-.

e If a solution exists for some i, j, then output x* = x; ; and quit.
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Exhaustive Search (step 3)

e Find a vector x with ||x||p = 2 that satisfies the equation y = ®x.

That is, set
1]

X1 0
0

X

2 X3 :
210 A A
X12 = ; X1,3 = Ofr---~ Xn-1n = 0

: Xn-1

0 : Xn

| O]
and search x;, x; € R (i,j =1,2,...,n) that satisfies
y = (Dxi,]' = xi¢i + x]'(i)]-.

e If a solution exists for some i, j, then output x* = x; ; and quit.

e Otherwise, proceed the next step.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods



Exhaustive Search (step k)

e Do similar procedures for ||x|lo =k, k =3,4,...,m.

M. Nagahara (Univ of Kitakyushu) Sparsity Methods 29 /31



Is exhaustive search useful?

e Itis easily implemented.
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Is exhaustive search useful?

e Itis easily implemented.

e The computation time to find a solution grows exponentially with
problem size m.
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Is exhaustive search useful?

e Itis easily implemented.

e The computation time to find a solution grows exponentially with
problem size m.

e Suppose m = 100.
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Is exhaustive search useful?
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Is exhaustive search useful?

e Itis easily implemented.

e The computation time to find a solution grows exponentially with
problem size m.
e Suppose m = 100.

o Then it roughly takes 2!%° ~ 1.3 x 10% iterations (at the worst).

o If we can do one iteration in 1071 seconds (by a super computer),

o then we obtain the solution after 1.3 x 101> seconds, or 30 million
years.

o The study of sparse representation is to solve such a big problem
in a reasonable time.
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Conclusion

e Sparsity of a vector is measured by its Y norm.
e In sparse representation, a redundant dictionary of vectors is used.

e In sparse representation, the smallest number of vectors are
automatically chosen from a redundant dictionary that represent a
given vector (£° optimization).

o The exhaustive search to solve £ optimization requires
computational time that exponentially increases as the problem
size increases.
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