# Sparsity Methods for Systems and Control What is Sparsity?

Masaaki Nagahara<sup>1</sup>

<sup>1</sup>The University of Kitakyushu nagahara@ieee.org

#### **Table of Contents**

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The  $\ell^0$  Norm
- Exhaustive Search

#### **Table of Contents**

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The  $\ell^0$  Norm
- 4 Exhaustive Search

## Standard basis for $\mathbb{R}^3$

• Standard basis  $\{e_1, e_2, e_3\}$ :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$



• Any vector  $y \in \mathbb{R}^3$  can be represented as

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 e_1 + y_2 e_2 + y_3 e_3$$

## Standard basis for $\mathbb{R}^3$

• Standard basis  $\{e_1, e_2, e_3\}$ :

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$



• Any vector  $y \in \mathbb{R}^3$  can be represented as

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = y_1 e_1 + y_2 e_2 + y_3 e_3.$$

### General basis for $\mathbb{R}^3$

- Any three linearly independent vectors  $\phi_1$ ,  $\phi_2$ , and  $\phi_3$  in  $\mathbb{R}^3$  form a basis for  $\mathbb{R}^3$ .
- Any vector  $y \in \mathbb{R}^3$  can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are uniquely determined.

### General basis for $\mathbb{R}^3$

- Any three linearly independent vectors  $\phi_1$ ,  $\phi_2$ , and  $\phi_3$  in  $\mathbb{R}^3$  form a basis for  $\mathbb{R}^3$ .
- Any vector  $y \in \mathbb{R}^3$  can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are uniquely determined.

## General basis for $\mathbb{R}^3$

- Any three linearly independent vectors  $\phi_1$ ,  $\phi_2$ , and  $\phi_3$  in  $\mathbb{R}^3$  form a basis for  $\mathbb{R}^3$ .
- Any vector  $y \in \mathbb{R}^3$  can be represented as

$$y = \beta_1 \phi_1 + \beta_2 \phi_2 + \beta_3 \phi_3$$

• The coefficients  $\beta_1$ ,  $\beta_2$ ,  $\beta_3$  are uniquely determined.

• Three linearly independent vectors:

$$\phi_1 = e_1 + e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \phi_2 = e_2 + e_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \phi_3 = e_3 + e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

• Set of 6 vectors (redundant basis)

$$\{e_1, e_2, e_3, \phi_1, \phi_2, \phi_3\}$$

• Three linearly independent vectors:

$$\phi_1 = e_1 + e_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \ \phi_2 = e_2 + e_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \ \phi_3 = e_3 + e_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

Set of 6 vectors (redundant basis)

$$\{e_1, e_2, e_3, \phi_1, \phi_2, \phi_3\}$$



• For a vector  $y \in \mathbb{R}^3$ , we want a signal representation (redundant representation):

$$y = \sum_{i=1}^{3} \alpha_i e_i + \sum_{i=1}^{3} \beta_i \phi_i.$$

• There are infinitely many solutions for  $\alpha_i$  and  $\beta_i$  (i = 1, 2, 3)

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (y_1, y_2, y_3, 0, 0, 0),$$

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (-y_3, -y_1, -y_2, y_1, y_2, y_3)$$

• For a vector  $y \in \mathbb{R}^3$ , we want a signal representation (redundant representation):

$$\boldsymbol{y} = \sum_{i=1}^{3} \alpha_{i} \boldsymbol{e}_{i} + \sum_{i=1}^{3} \beta_{i} \boldsymbol{\phi}_{i}.$$

• There are infinitely many solutions for  $\alpha_i$  and  $\beta_i$  (i = 1, 2, 3).

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (y_1, y_2, y_3, 0, 0, 0),$$
  
$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (-y_3, -y_1, -y_2, y_1, y_2, y_3).$$

- A vector  $y = (1, 1, 1)^{T}$  on the plane spanned by  $e_1$  and  $\phi_2$ .
- A coefficient set is obtained as

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (1, 0, 0, 0, 1, 0).$$

This is a sparse representation of  $y = (1, 1, 1)^{\top}$  since it contains many zeros.



- A vector  $y = (1, 1, 1)^{T}$  on the plane spanned by  $e_1$  and  $\phi_2$ .
- A coefficient set is obtained as

$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = (1, 0, 0, 0, 1, 0).$$

This is a sparse representation of  $y = (1, 1, 1)^T$  since it contains many zeros.



• How do you explain this picture by using words in a small dictionary that does not have the word "elephant"?



- A set of vectors  $\{\phi_1, \phi_2, \dots, \phi_n\}$  in  $\mathbb{R}^m$ .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements  $\phi_1, \phi_2, \dots, \phi_n$  in the dictionary is called **atoms** (not "words").
- For a vector  $y \in \mathbb{R}^m$ , we find coefficients  $\alpha_1, \alpha_2, \dots, \alpha_n$  such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors  $\{\phi_1, \phi_2, \dots, \phi_n\}$  in  $\mathbb{R}^m$ .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements  $\phi_1, \phi_2, \dots, \phi_n$  in the dictionary is called **atoms** (not "words").
- For a vector  $y \in \mathbb{R}^m$ , we find coefficients  $\alpha_1, \alpha_2, \dots, \alpha_n$  such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors  $\{\phi_1, \phi_2, \dots, \phi_n\}$  in  $\mathbb{R}^m$ .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements  $\phi_1, \phi_2, \dots, \phi_n$  in the dictionary is called atoms (not "words").
- For a vector  $y \in \mathbb{R}^m$ , we find coefficients  $\alpha_1, \alpha_2, \dots, \alpha_n$  such that

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

- A set of vectors  $\{\phi_1, \phi_2, \dots, \phi_n\}$  in  $\mathbb{R}^m$ .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements  $\phi_1, \phi_2, \dots, \phi_n$  in the dictionary is called atoms (not "words").
- For a vector  $y \in \mathbb{R}^m$ , we find coefficients  $\alpha_1, \alpha_2, \dots, \alpha_n$  such that

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

- A set of vectors  $\{\phi_1, \phi_2, \dots, \phi_n\}$  in  $\mathbb{R}^m$ .
- If m < n and m vectors in this set are linearly independent, then this is called a redundant dictionary.
- The elements  $\phi_1, \phi_2, \dots, \phi_n$  in the dictionary is called atoms (not "words").
- For a vector  $y \in \mathbb{R}^m$ , we find coefficients  $\alpha_1, \alpha_2, \dots, \alpha_n$  such that

$$y = \sum_{i=1}^{n} \alpha_i \phi_i.$$

• Define a matrix  $\Phi$  and a vector x as

$$\Phi \triangleq \begin{bmatrix} \boldsymbol{\phi}_1 & \boldsymbol{\phi}_2 & \dots & \boldsymbol{\phi}_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \boldsymbol{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^{n} \alpha_i \boldsymbol{\phi}_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

ullet The matrix  $\Phi$  is called a dictionary matrix or measurement matrix

• Define a matrix  $\Phi$  and a vector x as

$$\Phi \triangleq \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

• The matrix  $\Phi$  is called a dictionary matrix or measurement matrix

• Define a matrix  $\Phi$  and a vector x as

$$\Phi \triangleq \begin{bmatrix} \phi_1 & \phi_2 & \dots & \phi_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad \mathbf{x} \triangleq \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n.$$

Then the relation

$$y = \sum_{i=1}^n \alpha_i \phi_i.$$

is compactly rewritten as

$$y = \Phi x$$
.

ullet The matrix  $\Phi$  is called a dictionary matrix or measurement matrix.

# The problem of sparse representation

#### Problem (Sparse Representation)

Given a vector  $y \in \mathbb{R}^m$  and a dictionary matrix  $\Phi \in \mathbb{R}^{m \times n}$  with m < n. Find the simplest (i.e. sparsest) representation of y that satisfies

$$y = \Phi x$$
.

ullet This problem is also known as compressed sensing, where  $\Phi$  models an oversampling sensor.

# The problem of sparse representation

#### Problem (Sparse Representation)

Given a vector  $y \in \mathbb{R}^m$  and a dictionary matrix  $\Phi \in \mathbb{R}^{m \times n}$  with m < n. Find the simplest (i.e. sparsest) representation of y that satisfies

$$y = \Phi x$$
.

• This problem is also known as compressed sensing, where  $\Phi$  models an oversampling sensor.

#### **Table of Contents**

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The  $\ell^0$  Norm
- 4 Exhaustive Search

• linear equations with unknowns  $x_1$ ,  $x_2$ , and  $x_3$ :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
,  $x_2 = -2t + 3$ ,  $x_3 = t$ ,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns  $x_1$ ,  $x_2$ , and  $x_3$ :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
,  $x_2 = -2t + 3$ ,  $x_3 = t$ ,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns  $x_1$ ,  $x_2$ , and  $x_3$ :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
,  $x_2 = -2t + 3$ ,  $x_3 = t$ ,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns  $x_1$ ,  $x_2$ , and  $x_3$ :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
,  $x_2 = -2t + 3$ ,  $x_3 = t$ ,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

• linear equations with unknowns  $x_1$ ,  $x_2$ , and  $x_3$ :

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- There are infinitely many solutions
- All solutions

$$x_1 = t$$
,  $x_2 = -2t + 3$ ,  $x_3 = t$ ,

- Such a system of equations is called an underdetermined system.
- How can we specify one unique vector among these?

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The  $\ell^2$ -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
  
=  $t^2 + (-2t + 3)^2 + t^2$   
=  $6(t - 1)^2 + 3$ .

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan<sup>1</sup>, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The  $\ell^2$ -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan¹, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The  $\ell^2$ -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan<sup>1</sup>, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The  $\ell^2$ -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
$$= t^2 + (-2t + 3)^2 + t^2$$
$$= 6(t - 1)^2 + 3.$$

is minimized by t = 1.

- Let us consider a detective, like Edogawa Conan<sup>1</sup>, who solve this problem.
- The two proofs (equations) are insufficient and he should seek one more independent proof.
- If he gets one more proof saying the criminal is the smallest one among the suspects.
- The  $\ell^2$ -norm

$$||x||_2^2 = x_1^2 + x_2^2 + x_3^2$$
  
=  $t^2 + (-2t + 3)^2 + t^2$   
=  $6(t - 1)^2 + 3$ .

is minimized by t = 1.

$$\Phi x = y$$
.

- $\Phi$  is an  $m \times n$  matrix where m < n (we call this a fat matrix).
- Assume  $\Phi$  has full row rank, that is,

$$\operatorname{rank}(\Phi) = m.$$

- For any vector  $y \in \mathbb{R}^m$ , there exists at least one solution x that satisfies  $\Phi x = y$ .
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- $\Phi$  is an  $m \times n$  matrix where m < n (we call this a fat matrix).
- Assume  $\Phi$  has full row rank, that is,

$$rank(\Phi) = m.$$

- For any vector  $y \in \mathbb{R}^m$ , there exists at least one solution x that satisfies  $\Phi x = y$ .
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- $\Phi$  is an  $m \times n$  matrix where m < n (we call this a fat matrix).
- Assume  $\Phi$  has full row rank, that is,

$$rank(\Phi) = m$$
.

- For any vector  $y \in \mathbb{R}^m$ , there exists at least one solution x that satisfies  $\Phi x = y$ .
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- $\Phi$  is an  $m \times n$  matrix where m < n (we call this a fat matrix).
- Assume  $\Phi$  has full row rank, that is,

$$\operatorname{rank}(\Phi)=m.$$

- For any vector  $y \in \mathbb{R}^m$ , there exists at least one solution x that satisfies  $\Phi x = y$ .
- In fact, there are infinitely many solutions.

$$\Phi x = y$$
.

- $\Phi$  is an  $m \times n$  matrix where m < n (we call this a fat matrix).
- Assume  $\Phi$  has full row rank, that is,

$$\operatorname{rank}(\Phi)=m.$$

- For any vector  $y \in \mathbb{R}^m$ , there exists at least one solution x that satisfies  $\Phi x = y$ .
- In fact, there are infinitely many solutions.

### **Table of Contents**

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The  $\ell^0$  Norm
- 4 Exhaustive Search

### Norm

A norm in  $\mathbb{R}^n$  should satisfy

- For any vector  $x \in \mathbb{R}^n$  and any number  $\alpha \in \mathbb{R}$ ,  $||\alpha x|| = |\alpha|||x||$ .
- ② For any  $x, y \in \mathbb{R}^n$ ,  $||x + y|| \le ||x|| + ||y||$ .
- - The  $\ell^2$  norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The  $\ell^1$  norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

#### Norm

A norm in  $\mathbb{R}^n$  should satisfy

- For any vector  $x \in \mathbb{R}^n$  and any number  $\alpha \in \mathbb{R}$ ,  $\|\alpha x\| = |\alpha| \|x\|$ .
- ② For any  $x, y \in \mathbb{R}^n$ ,  $||x + y|| \le ||x|| + ||y||$ .
- **3**  $||x|| = 0 \iff x = 0.$ 
  - The  $\ell^2$  norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The  $\ell^1$  norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \ldots, |x_n|\}$$

#### Norm

A norm in  $\mathbb{R}^n$  should satisfy

- For any vector  $x \in \mathbb{R}^n$  and any number  $\alpha \in \mathbb{R}$ ,  $\|\alpha x\| = |\alpha| \|x\|$ .
- ② For any  $x, y \in \mathbb{R}^n$ ,  $||x + y|| \le ||x|| + ||y||$ .
- **3**  $||x|| = 0 \iff x = 0.$ 
  - The  $\ell^2$  norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The  $\ell^1$  norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$|x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$



#### Norm

A norm in  $\mathbb{R}^n$  should satisfy

- For any vector  $x \in \mathbb{R}^n$  and any number  $\alpha \in \mathbb{R}$ ,  $\|\alpha x\| = |\alpha| \|x\|$ .
- ② For any  $x, y \in \mathbb{R}^n$ ,  $||x + y|| \le ||x|| + ||y||$ .
- **3**  $||x|| = 0 \iff x = 0.$ 
  - The  $\ell^2$  norm (or Euclidean norm)

$$||x||_2 \triangleq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

• The  $\ell^1$  norm

$$||x||_1 \triangleq |x_1| + |x_2| + \ldots + |x_n|.$$

$$||x||_{\infty} \triangleq \max\{|x_1|, |x_2|, \dots, |x_n|\}$$



Contour curves ( $||x||_p = 1$ ) of  $\ell^1$ ,  $\ell^2$ ,  $\ell^\infty$  norms.



Contour curves ( $||x||_p = 1$ ) of  $\ell^1$ ,  $\ell^2$ ,  $\ell^\infty$  norms.



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\mathsf{T}} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

supp is the support of x, namely,

$$supp(x) \triangleq \{i \in \{1, 2, ..., n\} : x_i \neq 0\},\$$

I - I denotes the number of elements.

- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0$$



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

$$supp(x) \triangleq \{i \in \{1, 2, ..., n\} : x_i \neq 0\},\$$

- | · | denotes the number of elements.
- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- | · | denotes the number of elements.
- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- $|\cdot|$  denotes the number of elements.
- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- $|\cdot|$  denotes the number of elements.
- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$



- Consider a vector  $\mathbf{x} = [x_1, x_2, \dots, x_n]^{\top} \in \mathbb{R}^n$ .
- The  $\ell^0$  norm of x is defined by

$$||x||_0 \triangleq |\operatorname{supp}(x)|,$$

#### where

$$\operatorname{supp}(x) \triangleq \left\{ i \in \{1, 2, \dots, n\} : x_i \neq 0 \right\},\,$$

- | · | denotes the number of elements.
- The  $\ell^0$  norm counts the number of non-zero elements in x.
- The  $\ell^0$  norm *does not* satisfy the first property in the definition of norm, and it is sometimes called the  $\ell^0$  pseudo-norm.

$$||2x||_0 = ||x||_0 \neq 2||x||_0.$$



# $\ell^0$ optimization problem

Now the problem of sparse representation is formulated as follows:

## $\ell^0$ optimization problem

Given a vector  $y \in \mathbb{R}^m$  and a full-row-rank matrix  $\Phi \in \mathbb{R}^{m \times n}$  with m < n. Find the optimizer  $x^*$  of the optimization problem:

minimize 
$$||x||_0$$
 subject to  $y = \Phi x$ .

This problem is called the  $\ell^0$  optimization.

### **Table of Contents**

- Redundant Dictionary
- 2 Underdetermined Systems
- 3 The  $\ell^0$  Norm
- Exhaustive Search

### How to solve it?

## $\ell^0$ optimization problem

Given a vector  $y \in \mathbb{R}^m$  and a full-row-rank matrix  $\Phi \in \mathbb{R}^{m \times n}$  with m < n. Find the optimizer  $x^*$  of the optimization problem:

minimize 
$$||x||_0$$
 subject to  $y = \Phi x$ .

• We can try an exhaustive search for this optimization.

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .

- If (0, 0, x<sub>2</sub>) is a solution, then x<sub>2</sub> = 3 and x<sub>2</sub> = 0. This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
- If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - (a) If  $(0,0,x_3)$  is a solution, then  $x_3=3$  and  $x_3=0$ . This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
  - ① If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - ② If  $(0, x_2, 0)$  is a solution, then  $x_2 = 3$ . This is a solution.
  - ① If  $(0, 0, x_3)$  is a solution, then  $x_3 = 3$  and  $x_3 = 0$ . This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0).

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
  - If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - ② If  $(0, x_2, 0)$  is a solution, then  $x_2 = 3$ . This is a solution.
  - ① If  $(0, 0, x_3)$  is a solution, then  $x_3 = 3$  and  $x_3 = 0$ . This is not a solution.
- ullet The solution to the  $\ell^0$  optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
  - If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - ② If  $(0, x_2, 0)$  is a solution, then  $x_2 = 3$ . This is a solution.
  - ③ If  $(0, 0, x_3)$  is a solution, then  $x_3 = 3$  and  $x_3 = 0$ . This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
  - If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - ② If  $(0, x_2, 0)$  is a solution, then  $x_2 = 3$ . This is a solution.
  - If  $(0, 0, x_3)$  is a solution, then  $x_3 = 3$  and  $x_3 = 0$ . This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0)

$$x_1 + x_2 + x_3 = 3$$
$$x_1 - x_3 = 0$$

- First, try  $(x_1, x_2, x_3) = (0, 0, 0)$ . This is not a solution.
- Second, try  $(x_1, 0, 0)$ ,  $(0, x_2, 0)$ , and  $(0, 0, x_3)$ .
  - If  $(x_1, 0, 0)$  is a solution, then  $x_1 = 3$  and  $x_1 = 0$ . This is not a solution.
  - ② If  $(0, x_2, 0)$  is a solution, then  $x_2 = 3$ . This is a solution.
  - If  $(0, 0, x_3)$  is a solution, then  $x_3 = 3$  and  $x_3 = 0$ . This is not a solution.
- The solution to the  $\ell^0$  optimization is (0,3,0).

- If y = 0, then output  $x^* = 0$  as the optimal solution and quit.
- Otherwise, proceed to the next step.

• Find a vector x with  $||x||_0 = 1$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search  $x_i \in \mathbb{R}$  (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

If a solution exists for some i, output  $x^* = x_i$  as the solution and quit.

• Find a vector x with  $||x||_0 = 1$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search  $x_i \in \mathbb{R}$  (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

 If a solution exists for some i, output x\* = xi as the solution and quit.

• Find a vector x with  $||x||_0 = 1$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search  $x_i \in \mathbb{R}$  (i = 1, 2, ..., n) that satisfies

$$\boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x}_i = \boldsymbol{x}_i \boldsymbol{\phi}_i.$$

- If a solution exists for some i, output  $x^* = x_i$  as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with  $||x||_0 = 1$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search  $x_i \in \mathbb{R}$  (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

- If a solution exists for some i, output  $x^* = x_i$  as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with  $||x||_0 = 1$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_1 \triangleq \begin{bmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x_2 \triangleq \begin{bmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \quad x_n \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n \end{bmatrix}$$

and search  $x_i \in \mathbb{R}$  (i = 1, 2, ..., n) that satisfies

$$y = \Phi x_i = x_i \phi_i.$$

- If a solution exists for some i, output  $x^* = x_i$  as the solution and quit.
- Otherwise, proceed the next step.

• Find a vector x with  $||x||_0 = 2$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search  $x_i, x_j \in \mathbb{R}$  (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

• If a solution exists for some i, j, then output  $x' = x_{i,j}$  and quit.

• Find a vector x with  $||x||_0 = 2$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search  $x_i, x_j \in \mathbb{R}$  (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

• If a solution exists for some i, j, then output  $x^* = x_{i,j}$  and quit.

## Exhaustive Search (step 3)

• Find a vector x with  $||x||_0 = 2$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search  $x_i, x_j \in \mathbb{R}$  (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output  $x^* = x_{i,j}$  and quit.
- Otherwise, proceed the next step.

## Exhaustive Search (step 3)

• Find a vector x with  $||x||_0 = 2$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search  $x_i, x_j \in \mathbb{R}$  (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output  $x^* = x_{i,j}$  and quit.
- Otherwise, proceed the next step.

## Exhaustive Search (step 3)

• Find a vector x with  $||x||_0 = 2$  that satisfies the equation  $y = \Phi x$ . That is, set

$$x_{1,2} \triangleq \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, x_{1,3} \triangleq \begin{bmatrix} x_1 \\ 0 \\ x_3 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, x_{n-1,n} \triangleq \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n-1} \\ x_n \end{bmatrix}$$

and search  $x_i, x_j \in \mathbb{R}$  (i, j = 1, 2, ..., n) that satisfies

$$y = \Phi x_{i,j} = x_i \phi_i + x_j \phi_j.$$

- If a solution exists for some i, j, then output  $x^* = x_{i,j}$  and quit.
- Otherwise, proceed the next step.

# Exhaustive Search (step *k*)

• Do similar procedures for  $||x||_0 = k, k = 3, 4, ..., m$ .

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size *m*.
- Suppose m = 100.
  - Then it roughly takes 2°°° > 1.3 × 10°° devalues (in the worst).
    If we can do one ileration in 10°° seconds (by a super computer), then we obtain the solution after 1.3 × 10°° seconds, or 30 million (1.3 × 10°°).
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.

- The study of sparse representation is to solve such a big proble
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
  - Then it roughly takes  $2^{100} \approx 1.3 \times 10^{30}$  iterations (at the worst).
  - If we can do one iteration in  $10^{-15}$  seconds (by a super computer).
  - then we obtain the solution after  $1.3 \times 10^{15}$  seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
  - Then it roughly takes  $2^{100} \approx 1.3 \times 10^{30}$  iterations (at the worst).
  - If we can do one iteration in  $10^{-15}$  seconds (by a super computer),
  - then we obtain the solution after  $1.3 \times 10^{15}$  seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
  - Then it roughly takes  $2^{100} \approx 1.3 \times 10^{30}$  iterations (at the worst).
  - If we can do one iteration in  $10^{-15}$  seconds (by a super computer),
  - then we obtain the solution after  $1.3 \times 10^{15}$  seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
  - Then it roughly takes  $2^{100} \approx 1.3 \times 10^{30}$  iterations (at the worst).
  - If we can do one iteration in  $10^{-15}$  seconds (by a super computer),
  - then we obtain the solution after  $1.3 \times 10^{15}$  seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- It is easily implemented.
- The computation time to find a solution grows exponentially with problem size m.
- Suppose m = 100.
  - Then it roughly takes  $2^{100} \approx 1.3 \times 10^{30}$  iterations (at the worst).
  - If we can do one iteration in  $10^{-15}$  seconds (by a super computer),
  - then we obtain the solution after  $1.3 \times 10^{15}$  seconds, or 30 million years.
- The study of sparse representation is to solve such a big problem in a reasonable time.

- ullet Sparsity of a vector is measured by its  $\ell^0$  norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector ( $\ell^0$  optimization).
- The exhaustive search to solve  $\ell^0$  optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its  $\ell^0$  norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector ( $\ell^0$  optimization).
- The exhaustive search to solve  $\ell^0$  optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its  $\ell^0$  norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector ( $\ell^0$  optimization).
- The exhaustive search to solve  $\ell^0$  optimization requires computational time that exponentially increases as the problem size increases.

- Sparsity of a vector is measured by its  $\ell^0$  norm.
- In sparse representation, a redundant dictionary of vectors is used.
- In sparse representation, the smallest number of vectors are automatically chosen from a redundant dictionary that represent a given vector ( $\ell^0$  optimization).
- The exhaustive search to solve  $\ell^0$  optimization requires computational time that exponentially increases as the problem size increases.