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Abstract: In this article, we propose a new design method of∆Σ modulators. We propose an optimal design to shape the
frequency response of the noise transfer function (NTF). Generalized KYP (Kalman-Yakubovic-Popov) lemma is used to
reduce our optimization to a linear matrix inequality. Design examples are illustrated to show effectiveness of our method.
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1. INTRODUCTION

∆Σ modulators [1] are widely used in AD (Analog-to-
Digital) and DA (Digital-to-Analog) converters, in which
high performance can be obtained with coarse quantizers.

A fundamental issue in designing∆Σ modulators is
noise shaping in the frequency domain [1]. A usual solu-
tion to this is to insert accumulator(s) in the feedback loop
to attenuate the gain of the noise transfer function (NTF)
in low frequencies. This methodology looks like PID
(Proportional-Integral-Derivative) control [2], in which
the performance of the designed system depends on the
amount of experiences of the designer. That is, the con-
ventional design is of an ad hoc nature.

Let us consider a general∆Σ modulator shown in Fig.
1. In this modulator,Q is a quantizer andH = [H1, H2]
is a linear filter with 2 inputs and 1 output. The filterH1

shapes the signal transfer function (STF) from the inputu
to the outputy to have a unity gain in the frequency band
of interest. On the other hand, the filterH2 eliminates the
in-band quantization noise by shaping the NTF.

To shapeoptimally the NTF in the frequency band of
interest, say[0,Ω], the NTF zero optimization [1] can be
used. This method is to minimize the normalized noise
power, given by the integral of the squared magnitude of
the NTF over[0,Ω]. On the other hand, we minimize
the maximum of the gain of the NTF in[0,Ω]. This is
related to a minimax optimization (or anH∞ one), and
more effective than the NTF zero optimization in terms
of uniform attenuation of the frequency response over
the band. We have proposed anH∞ optimization in [3],
in which we have to choose a suitable weighting func-
tion to obtain a good performance. On the other hand,
we propose in this article more useful method with no
weighting function, by generalized Kalman-Yakubovic-
Popov (KYP) lemma [4]. Then the optimization can be
reduced to one with a linear matrix inequality (LMI). The
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Fig. 2 Linearized model for∆Σ modulator

idea to apply generalized KYP lemma to∆Σ modula-
tor design is also proposed in [5], in which they assume
one-bit quantizer forQ and optimize the average power
of the reconstruction error in low frequencies. In con-
trast to this approach, our optimization is for quantization
noise shaping, which is more familiar to engineers and re-
searchers in this area. Moreover, the zeros of the NTF can
be assigned arbitrarily on the unit circle in the complex
plane with linear matrix equality (LME), and the stabil-
ity condition can be described by anH∞ constraint norm
of the NTF, which can be an LMI. That is, the proposed
method can be described by LMI’s and LME’s, which can
be solved effectively by numerical computation softwares
such as MATLAB. Design examples show effectiveness
of our method.

2. CHARACTERIZATION OF LOOP
FILTERS

In this section, we first characterize allH(z)’s which
stabilize the linearized model shown in Fig. 2. A neces-
sary condition that a∆Σ modulator is stable is that its
linearized model is internally stable. Note that the con-
verse is generally not true, that is, even if the linearized
model is stable, the nonlinear system in Fig. 1 can be un-
stable. A stability condition for the nonlinear system is
discussed in 3.3.

We first characterize the filterH(z) which internally
stabilizes the linearized feedback system. All stabilizing
filters are characterized as follows [3].

Lemma 1: The linearized feedback system in Fig.
2 is well-posed and internally stable if and only if

H1(z) =
R1(z)

1 +R2(z)
, H2(z) =

R2(z)

1 +R2(z)
,

R1(z) ∈ S, R2(z) ∈ S′,

(1)
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Fig. 3 Error-feedback structure of∆Σ modulator with
design parametersR1 ∈ S andR2 ∈ S′.

whereS is the set of all stable, causal, real-rational trans-
fer functions, andS′ := {R ∈ S : R is strictly causal}.
By using these parametersR1 ∈ S andR2 ∈ S′, the STF
and NTF are given by

TSTF(z) = R1(z), TNTF(z) = 1 +R2(z),

and the input/output equation of the system in Fig. 2 is
given by

y = R1u+ (1 +R2)n. (2)

By (2), the structure of the∆Σ modulator with the
design parametersR1 ∈ S andR2 ∈ S′ is shown in Fig.
3. This structure, called error-feedback structure, is often
applied in the digital loops required in∆Σ DA converters
[1]. By this block diagram, we can interpret the filterR1

as a pre-filter to shape the frequency response of the input
signal, andR2 as a feedback gain for the quantization
noiseQψ − ψ.

3. OPTIMAL LOOP FILTER DESIGN VIA
LINEAR MATRIX INEQUALITIES

AND EQUALITIES

In this section, we propose an optimal design of the
loop filterH(z) by using the parameterization in Lemma
1.

3.1 Optimal noise shaping via generalized KYP
lemma

For simplicity, we assumeR1(z) = 1. This means
that the STF is assumed to be allpass. Then our problem
is formulated as follows.

Problem 1: GivenΩ (0 < Ω < π) andγ > 0, find
R2(z) ∈ S′ which satisfies

sup
ω∈[0,Ω]

|TNTF(e
jω)| < γ. (3)

In implementation, finite impulse response (FIR) fil-
ters are often preferred, and hence we assume thatR2(z)
is FIR, that is, we set

R2(z) =
N

∑

k=0

αkz
−k, α0 = 0.

Note thatR2(z) is always inS′. We then introduce
state-space matrices{A,B,C(α)}, such thatR2(z) =

C(α)(zI −A)−1B, whereα =
[

α0 α1 . . . αN

]

,

A =













0 1 0
. . .

. . .

. . . 1
0 0













, B =











0
...
0
1











,

andC(α) = [αN , αN−1, . . . , α1]. Then the inequality
(3) can be described as a linear matrix inequality (LMI)
by using the generalized KYP lemma [4].

Theorem 1: The inequality (3) holds if and only if
there exist symmetric matricesQ > 0 andP such that





M1(P,Q) M2(P,Q) C(α)⊤

M2(P,Q) M3(P, γ
2) 1

C(α) 1 −1



 < 0,

where

M1(P,Q) = A⊤PA+QA+A⊤Q− P − 2Q cosΩ,

M2(P,Q) = A⊤PB +QB,

M3(P, γ
2) = B⊤PB − γ2.

By Theorem 1, the optimal coefficientsα1, . . . αN can be
obtained efficiently by standard optimization softwares,
e.g., MATLAB (See [6]).

3.2 NTF zeros
To ensure perfect reconstruction of the DC input level,

and to reduce low-frequency tones,TNTF(z) should have
zeros atz = 1, or the frequencyω = 0 [1]. A sim-
ilar requirement is in bandpass∆Σ modulator; we set
NTF zeros at a given frequencyω0, or z = e±jω0 .
The zeros ofTNTF(z) can be assigned by linear equa-
tions (linear constraints) ofα1, . . . , αN . Definen(z) :=

zN +
∑N

k=1 αkz
N−k. Then,TNTF(z) hasM zeros at

z = z0 if and only if

dkn(z)

dzk

∣

∣

∣

∣

z=z0

= 0, k = 0, 1, . . . ,M − 1,

where d0n(z)
dz0 := n(z). The LMI with these linear con-

straints can be also effectively solved.

3.3 Stability condition
The linearized model Fig. 2 is useful for analyzing the

noise shaping properties of∆Σ modulators. The stability
of ∆Σ modulators, however, should be analyzed by con-
sidering their nonlinear behaviors. To analyze the stabil-
ity, theH∞ norm ofTNTF(z) is available. For the stabil-
ity of binary∆Σ modulators, the following criterion (Lee
criterion) is widely used [7], [1]:

‖TNTF‖∞ < 1.5. (4)

Note that this is not a sufficient nor necessary condition
for the stability. For multi-bit modulators withM -step
quantizer, the following is a sufficient condition for the
stability [8], [1]:

‖h‖1 ≤M + 2 − ‖u‖∞, (5)
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Fig. 4 Cascade of Error Feedback

whereh is the impulse response ofTNTF(z) andu is the
input signal. LetN denote the order ofTNTF(z). Then,
we have the following relation [9]:

‖h‖1 ≤ (2N + 1)‖TNTF‖∞.

By combining this with (5), we have another stability
condition.

‖TNTF‖∞ ≤
1

2N + 1
(M + 2 − ‖u‖∞). (6)

From the conditions (4) and (6), attenuation of‖TNTF‖∞
helps the stability. Therefore, we add the following sta-
bility constraints to the design of modulators:

‖TNTF‖∞ < C,

whereC > 0 is a constant (e.g., by Lee criterion,C =
1.5). This inequality is also reducible to LMI [6] and
easily combined with the LMI optimization mentioned
above.

4. CASCADE OF ERROR FEEDBACK
FOR HIGH-ORDER MODULATORS

Assume thatR1 = 1 andR2 = R. To design a high-
order modulator, we can use a cascade of the error feed-
back modulator in Fig. 3. The proposed cascade structure
is shown in Fig. 4. By using this structure, we have

TSTF(z) = 1, TNTF(z) = (1 +R)M ,

whereM denotes the number of filtersR. If R ∈ S′, then
the linearized feedback system is stable. An advantage of
this structure is that the number of taps ofR can be re-
duced, and hence the implementation is much easier than
a filter with a large number of taps. This structure can be
applied to∆Σ DA converters.

To satisfy the stability condition‖TNTF‖∞ < C, the
filter R is designed to limit

‖1 +R‖∞ < C1/M .

If this is satisfied, we have

‖TNTF‖∞ ≤ ‖1 +R‖M
∞ < C,

by the sub-multiplicative property of theH∞ norm. In
this section, we show examples of designing∆Σ modu-
lators by the proposed method.
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Fig. 5 Frequency response ofTNTF: proposed (solid
line) and conventional (dash)

5. DESIGN EXAMPLES

5.1 ∆Σ Modulator with DC zero

We here design the filterR2(z) which is an FIR filter
with 12 taps, and setR1(z) = 1. The cut-off frequencyΩ
is 3π/32. The NTF1 +R2(z) is designed to have a zero
at z = 1 to attenuate DC noise most, and also to satisfy
the stability condition‖TNTF‖∞ < 1.5 (these constraints
can be described as linear matrix equality and inequality,
see [3]). By this optimization, we obtain the minimum
value ofγ = 6.48 × 10−2 (−23.8 [dB]). Fig. 5 shows
TNTF’s by the proposed method and the first order∆Σ
modulator. TheTNTF of our design shows a lower gain in
the low frequency and a higher gain in the high frequency.
The frequency response in Fig. 5 is that of the linearized
system shown in Fig. 2. To see the nonlinear effect in
the quantizer, we simulate responses against sinusoidal
waves with various frequencies. The reconstruction filter
after the∆Σ modulator is chosen to beH∞ optimal one
proposed in [3]. Fig. 6 shows NSR (Noise-to-Signal Ra-
tio) against sinusoidal waves. The NSR shows that our
∆Σ modulator shows a better response than the conven-
tional one in all frequencies. Fig. 7 and Fig. 8 shows out-
puts respectively of proposed and conventional∆Σ con-
verters against a sinusoidal wave.

5.2 Higher order modulator

We here show a design example of a higer order modu-
lator with cascade structure in Fig. 4. We setR1 = 1, and
R2(z) = R(z) be an FIR filter with 32 taps. The cutoff
frequencyΩ is set to beπ/32. The FIR filterR(z) is de-
signed by using the LMI in Theorem 1, with the stability
condition‖TNTF‖∞ < 1.5. The number of cascadesM
is 4, that is, the order of the modulator is32 × 4 = 128.
We also design a modulator by the NTF zero optimiza-
tion [1] which minimize the normalized noise power of
the NTF. This modulator is designed by the MATLAB
functionsynthesizeNTF in the Delta-Sigma Toolbox
[1], with the order ofTNTF is 4, the over sampling ratio
(OSR) is 32, and‖TNTF‖∞ < 1.5.
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Fig. 6 NSR against sinusoidal waves: proposed (solid)
and conventional (dash)
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Fig. 7 Output against sinusoidal wave (proposed)

Fig. 9 show the frequency responses of the proposed
modulator and the NTF zero optimized one. By this fig-
ure, the gain of the proposed NTF is uniformly attenuated
over[0, π/32] while the conventional one shows a peak in
the band. The maximal difference between two gains is
about 10 [dB].

6. CONCLUSION

In this paper, we have propose a new design method of
∆Σ modulators. We have characterized the all stabilizing
loop filters for linearized model. Based on this, we have
formulated our problem of noise shaping in the frequency
domain. By using generalized KYP lemma, our design is
reducible to an LMI optimization. Assignment of NTF
zeros and stability condition are described by LMI’s and
LME’s, respectively. Design examples have shown effec-
tiveness of our method.
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