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Abstract: Wavelet expansion of an L2 signal requires the L2 inner product of the original signal and a scaling function.
In digital signal processing, it is common to use sampled data of continuous-time signals instead of the inner product. This
however causes a large reconstruction error, called “wavelet crime.” We therefore design a causal system which produces
an approximation of the inner product via sampled-dataH∞ control theory. We then make extensions to a multi-rate and
a multi-wavelet case. By numerical examples, we show the effectiveness of the proposed method.
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1. INTRODUCTION
Wavelet [3], [9] is an effective tool for analyzing

continuous-time signals. In wavelet theory, a continuous-
time signal is expressed as a linear combination of waves
(scaling and wavelet functions) which are localized in
time and frequency. This expression, called wavelet
expansion, gives us time-frequency analysis of signals,
which is efficient in analyzing in particular non-stationary
signals. For example, the image format JPEG2000 is
based on wavelet expansion and has higher compression
rate and better quality than the conventional JPEG based
on Fourier expansion [10].

Wavelet expansion of a continuous-time signal begins
with calculating coefficients of each wave contained in
the signal. When the signal is in L2 (the Lebesgue space
of square integrable functions on R), each coefficient,
called a wavelet coefficient, is equal to the L2 inner prod-
uct of the signal and a scaling function. The computation
of the inner product requires all values of the signal on R.
In real situation, however, it is usual that only the sampled
data of the original signal are available. In this case, it is
impossible to obtain the exact values of the coefficients.
Therefore, approximation is essential for computing the
coefficients in real signal processing. The roughest ap-
proximation is to use the sampled data themselves as the
coefficients. This is often used in real, by which arises a
large reconstruction error, called “wavelet crime [9].”

To prevent this crime, prefiltering methods have been
proposed [4], [5] in the situation where only the sam-
pled data are available. They are based on the sam-
pling theorem by Shannon, which assumes that the orig-
inal continuous-time signals are fully band-limited up to
the Nyquist frequency. However, this assumption fails
to consider practical signals such as rectangle or triangle
waves.

In recent papers [8], [6], new approaches to this prob-
lem has been developed in the framework of sampled-
data control theory. By using this theory, we can obtain
the optimal system taking account of the frequency char-
acteristic of the original analog signals.

Motivated by these studies, we consider in the article

the approximation problem via sampled-data control the-
ory. In [6], only the analog characteristic of the input sig-
nals is considered. On the other hand, we also consider
the characteristic of the reconstructed analog signals. The
design problem is formulated as a sampled-data H∞ op-
timization with a generalized hold. We also make exten-
sions to a multi-rate and a multi-wavelet case. By numer-
ical examples, we show the effectiveness of the proposed
method.

2. WAVELET EXPANSION
In this section, we discuss wavelet expansion. First,

we introduce multi-resolution analysis [7] which plays an
essential role in wavelet theory. Multi-resolution analysis
is defined as an increasing sequence {Vj}j∈Z of closed
subspaces in L2, and each subspace Vj has a Riesz basis
{φj,k}k∈Z where

φj,k := 2j/2φ(2j · −k).

In this definition, the function φ ∈ L2 is called as a scal-
ing function. Next, consider the orthogonal complement
Wj := Vj+1 � Vj . It can be shown that there exists a
function ψ ∈ L2 such that each subspace Wj has a Riesz
basis {ψj,k}k∈Z, where

ψj,k := 2j/2ψ(2j · −k).

Wavelet expansion of a continuous-time signal begins
with specifying a resolution J . Let f be in L2 and PJ

be the orthogonal projection in L2 onto the closed sub-
space VJ ⊂ L2. By using the basis {φJ,k}k∈Z in VJ , the
projection of f onto VJ can be expressed as

PJf =
∑
k∈Z

cJ (k)φJ,k. (1)

On the other hand, corresponding to the direct sum
representation

VJ = Vj0 ⊕Wj0 ⊕ · · · ⊕WJ−1,



the projection can be also decomposed as

PJf =
∑
k∈Z

cj0(k)φj0,k +
J−1∑
j=j0

∑
k∈Z

dj(k)ψj,k. (2)

This is the wavelet expansion of f at the resolution J , and
the coefficients {cj0 , dj0 , . . . , dJ−1} are called wavelet
coefficients. Since equations (1) and (2) are different ex-
pressions of the same signalPJf , the wavelet coefficients
can be calculated efficiently from only {cJ(k)}k∈Z by a
filter bank. From the above discussion, it can be seen that
the accuracy of the wavelet expansion at the resolution
J depends on that of the projection onto VJ . In other
words, it is necessary to accurately compute the coeffi-
cients {cJ(k)}k∈Z.

In particular, if {φJ,k}k∈Z is an orthonormal basis of
VJ , the coefficients {cJ(k)}k∈Z are given as follows:

cJ (k) = (f, φJ,k)L2

= 2J/2

∫ ∞

−∞
f(t)φ(2J t− k)dt.

However, as explained in Section 1, this inner product
cannot be computed exactly in practice. In order to over-
come this difficulty, we propose in the next section a de-
sign method of systems, which produce approximated co-
efficients using only sampled data.

3. COMPUTATION OF COEFFICIENTS
BY H∞ OPTIMIZATION

In this section, we propose a design method of sys-
tems which produce an approximation of wavelet coeffi-
cients of a continuous-time signal from only its sampled
data. The problem is formulated as a sampled-data H∞

optimization one. In this section, it is assumed that the
resolution J is equal to 0 and that the signal we aim to
expand is in L2[0,∞). Moreover, we make an important
assumption about the scaling function.

Assumption 1: There exists m > 0 such that the sup-
port of the scaling function φ is in [0,m].

First, we characterize the wavelet coefficient c0 of the
signal f ∈ L2[0,∞). From the projection theorem, the
coefficient sequence c0 ∈ �2 is characterized as the solu-
tion c ∈ �2 of the following optimization problem:

‖f −Hφc‖L2[0,∞) → min, (3)

where Hφ is defined as

Hφ : �2 → L2[0,∞) : c �→
∑
k≥0

c(k)φ0,k. (4)

Next, let us consider the error system in Fig. 1. On
the lower path, the exogenous signal w ∈ L2[0,∞) is
band limited by a transfer function F which has the fre-
quency characteristic of the continuous-time signals we

� F � S � K � Hφ � � ��

� e−ls

�fw c̃ v e+−

Fig. 1 Error system

aim to expand, and the signal f is the model signal to
be expanded. This signal f is then sampled by the ideal
sampler

S : FL2[0,∞) → �2,

(Sf)(k) := f(k), k = 0, 1, 2, . . . .

where

FL2[0,∞) := {Fw : w ∈ L2[0,∞)}.
The sampled data are processed by the digital filter K ,
and then transformed into a continuous-time signal v =
Hφc̃ ∈ V0.

Since the wavelet coefficient c0 of the signal f is char-
acterized by (3), the signal c̃ in Fig. 1 approximates c0 if
the error e = f −Hφc̃ is small. Hence, in order to obtain
a digital filter which produces the approximation of the
coefficient c0, it should be designed to make the error e
to be as small as possible.

Note that the signal f is delayed by e−ls : f �→ f(·−l)
on the upper path. Without this delay, the reconstruction
process becomes anti-causal one, and hence it is desirable
to take l to be no less than m.

Now, we formulate the design problem as follows.

Problem 1: Given a stable and strictly proper trans-
fer function F , a delay l > 0, a scaling function φ, and
a prespecified bound γ > 0, find a digital filter K sat-
isfying ‖Tew‖∞ < γ, where ‖Tew‖∞ is the L2[0,∞)
induced norm of the operator Tew from w to e in Fig. 1.

Invoking fast-sample/fast-hold approximation [11], we
can reduce this sampled-data H∞ optimization problem
to a discrete-time one. This discrete-time problem is a
finite dimensional one by the assumption 1, and can be
effectively solved by MATLAB routines. Hence, by bi-
section search, we can easily obtain a sub-optimal digital
filter minimizing ‖Tew‖∞.

4. EXTENSIONS
4.1 Higher resolution

In the above section, we have shown an approximation
method to compute wavelet coefficients at the resolution
0. Then, what should we do in order to compute higher
resolution coefficients?

Let us consider the error system in Fig. 2. Compared
with Fig. 1, the difference is that the sampled data of the
original signal f are first upsampled by ↑ 2J . The up-
sampler ↑ 2J is defined as follows:

↑ 2J : {x(k)}∞k=0 → {x(0), 0, 0, . . . , 0︸ ︷︷ ︸
2J−1

, x(1), 0, . . .}.
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Fig. 2 Error system: higher resolution case

The upsampling operation is implemented by inserting
2J −1 equidistant zero-valued samples between two con-
secutive samples of x(k) before the sampling rate is mul-
tiplied by the factor 2J . Then the signal is processed by
the digital filter K , which estimates the data between the
original samples. Then the estimated (virtually) higher
resolution signal is transformed to a continuous signal by
the following generalized hold:

HφJ : �2 → L2[0,∞) : c �→
∑
k≥0

c(k)φJ,k, (5)

which acts with it’s sampling period 1/2J .
The optimal digital filter K is obtained by minimizing

L2[0,∞) induced norm of the operator from w to e in
Fig. 2. This minimization is also a multi-rate sampled-
data H∞ optimization. The multi-rate system is equiva-
lently transformed into a single-rate one by discrete-time
lifting [1] or polyphase representation [9]. Then, by fast-
sample/fast-hold approximation, the problem is reduced
to a discrete-time one.

4.2 Multi-wavelet
Multi-wavelet is an extension of the conventional

wavelet and uses a wavelet basis generated by several
scaling functions called multi-scaling functions. By this
extension, there arises great flexibility in the design of a
wavelet, and desirable properties such as symmetry or or-
thonormality of scaling functions can be realized simul-
taneously [2].

In multi-wavelet, the multi-resolution analysis is con-
structed by multi-scaling functions φ(1), . . . , φ(r) ∈ L2,
and the subspace VJ has a Riesz basis {φ(1)

J,k1
, . . . , φ

(r)
J,kr

:
k1, . . . , kr ∈ Z}, where

φ
(l)
J,k := 2J/2φ(l)(2J · −k).

Then, the orthogonal projection of a signal f ∈ L2[0,∞)
onto the closed subspace VJ ⊂ L2 has the form

PJf =
r∑

l=1

∑
k∈Z

c
(l)
J (k)φ(l)

J,k(k).

As in the scalar case, these coefficients c(1)J , . . . , c
(r)
J

are called as wavelet coefficients of the signal f at the
resolution J , and can be characterized as the solution
c(1), . . . , c(r) ∈ �2 of the following optimization prob-
lem: ∥∥∥∥∥f −

r∑
l=1

Hφ(l)c(l)

∥∥∥∥∥
L2[0,∞)

→ min, (6)
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Fig. 3 Error system: multi-wavelet case

where Hφ(l) is defined in the same way as (4) and (5).
Now, let us consider the error system in Fig. 3. As

in Section 3, the resolution J is assumed to be equal to
0. Since the wavelet coefficients are characterized as the
solution of the optimization problem (6) similar to the
scalar case one (3), we can formulate the design problem
in the same way as problem 1.

Since H∞ optimization is executed in the state space
in which MIMO (multi-input multi-output) systems can
be treated in the same way as SISO (single-input single-
output) systems, the formulated problem can be treated as
a sampled-dataH∞ optimization one (in this case, the fil-
ter to be designed is a single-input and r-output system),
and so can be reduced to a discrete-time finite dimen-
sional one. And hence sub-optimal filters K1, . . . ,Kr

which compute the approximation of the wavelet coeffi-
cients c(1), . . . , c(r) respectively are obtained.

5. NUMERICAL EXAMPLES
In this section, we present numerical examples.

Throughout this section, the frequency characteristic F
is taken as follows:

F (s) =
1

(7s+ 1)(0.7s+ 1)
.

5.1 Scalar wavelet
As an example of a scalar case, we consider the or-

thogonal Daubechies-2 wavelet [3]. We make compar-
isons between the wavelet crime, the proposed method
with J = 0, and one with J = 2. For the proposed
method, the optimal filters are designed with l = 5 in
both cases.

First, we make a comparison by observing the fre-
quency responses of the error systems shown in Fig. 1
(J = 0) or Fig. 2 (J = 2). Fig. 4 shows the frequency re-
sponses. In this figure, the error frequency response of the
wavelet crime reconstruction (i.e., K = 1) is optimized
by varying the delay l so that theH∞ norm is minimized.
It can be seen that the errors by the proposed method are
both smaller than the wavelet crime in a wide frequency
range. In low frequency range, the wavelet crime recon-
struction shows a better response. It follows that the error
in wavelet crime appear particularly in a middle and high
frequency range.

We can also observe that, by taking the resolution J
higher than 0, we can obtain more accurate reconstruc-
tion. This shows effectiveness of the use of the interpo-



Fig. 4 Frequency responses of the error systems:
wavelet crime (dotted), proposed with J = 0
(dashed), and J = 2 (solid)

lator. Note that the sampling period in the sampler is not
changed in the case of J = 0 and J = 2.

Next, we execute the wavelet expansions of a chirp
signal,

f(t) = sin(ω(t) · t), ω(t) =
t

9
+

3
10
. (7)

This signal is a typical non-stationary sinusoid signal
whose frequency increases linearly with respect to time
t. The reconstructed signals are shown in Fig. 5. The
wavelet crime reconstruction shows a peaked response.
In Fig. 6, we illustrate the squared reconstruction errors.
In this figure, our reconstruction shows smaller error than
the wavelet crime. It should be noticed that the error by
the wavelet crime reconstruction increases as time passes.
This justifies the error frequency response Fig. 4.

We can conclude from these simulations that
• wavelet crime shows in particular middle- and high-

frequency errors,
• sampled-data H∞ optimization is effective in

sampled-data wavelet expansion,
• upsampling is also effective.

5.2 Multi-wavelet
In this subsection, we show an example of a multi-

wavelet case using the symmetric and orthogonal multi-
wavelet with approximation order 2 proposed in [2]. This
multi-wavelet has the multi-scaling functions shown in
Fig. 7. With this multi-wavelet, we compare the proposed
method with one proposed in [5].

The design parameters are as follows. The reconstruc-
tion delay l = 4, the number of scaling functions is r = 2,
and the subspace is V0 (i.e., J = 0).

Fig. 8 shows the frequency responses of the error sys-
tem shown in Fig. 3. Note that in the conventional case,
the reconstruction delay l is equal to 3/2. In this figure,
the proposed method shows the better error frequency re-
sponse than that of the conventional method, in particular
in a middle- and high-frequency range. The maximum
difference of the response is about 7 [dB] at around 0.5
[rad/sec].

Fig. 5 Time responses of expansions: Source signal
(dash-dotted), sampled data (circle), wavelet crime
(dotted), proposed with J = 0 (dashed), and J = 2
(solid)

Fig. 6 Time responses of squared expansion er-
rors: wavelet crime (dotted), proposed with J = 0
(dashed), and J = 2 (solid)

(a) φ(1)

(b) φ(2)

Fig. 7 Multi-scaling functions of Chui-Lian wavelet



Fig. 8 Frequency responses of the error systems: con-
ventional (dashed) and proposed (solid)

Fig. 9 Time responses of expansions: source signal (dot-
ted), sampled data (circle), conventional (dashed),
and proposed (solid)

Then, we simulate the reconstruction with the chirp
signal in (7). Fig. 9 shows the time response against the
chirp signal. The conventional reconstruction shows a
good response at the sampling instants, while in the inter-
samples it shows large gaps. On the other hand, the re-
sponse of the proposed method shows the better response
than the conventional one. Fig. 10 shows the squared
errors. This figure shows that the error of the proposed
method is smaller than the conventional one. From these
simulation results, the sampled-data H∞ optimization is
effective also in the multi-wavelet case.

6. CONCLUSION
In this article, a new design method of digital filters

which compute approximated wavelet coefficients has
been proposed, in the case that only the sampled-data
of the original signal are available. The design problem
is formulated as an sampled-data H∞ optimization one.
We have shown the problem can be reduced to a discrete-
time one by the fast-sample/fast-hold method. The ob-
tained discrete-time H∞ optimization can be effectively
solved by MATLAB routines. This method can be ex-
tended to a multi-rate and a multi-wavelet case by using

Fig. 10 Time responses of squared expansion errors:
conventional (dashed) and proposed (solid)

the discrete-time lifting and an MIMO filter design, re-
spectively. Finally, by numerical examples, the effective-
ness of the proposed method have been shown.
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