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Interpolation of Nonuniformly Decimated Signals
via Sampled-data H∞ Optimization
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Abstract: In this paper, we consider signal interpolation of discrete-time signals which are decimated nonuniformly.
A conventional interpolation method is based on the sampling theorem, and the resulting system consists of an ideal
filter with complex coefficients. On the other hand we adopt sampled-data H∞ optimization, which can take account of
intersample behavior, and the optimal filter with real coefficients is obtained. An example shows the effectiveness of our
method. By examples, we also show that there is the optimal decimation pattern.
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1. INTRODUCTION

Interpolation is a fundamental operation in digital sig-
nal processing, and has many applications such as signal
reconstruction, signal compression/expansion, and resiz-
ing/rotating digital images, see [11], [3]. If digital data
to be interpolated are located uniformly on the time axis,
the uniform interpolation is executed by an expander and
a digital filter (called an interpolation filter) [11], which
is conventionally designed via the sampling theorem.

Periodic nonuniform interpolation (or decimation)
also plays an important role in signal processing, such as
signal compression by nonuniform filterbanks [8], super-
resolution image processing [9], and time-interleaved AD
converters [10]. The design has been studied by many
researchers [12], [8], [13], [4], [5], in which the design
methods are based on the generalized sampling theorem.
The optimal filter (or the perfect reconstruction filter) is
an ideal lowpass filter with complex coefficients [12],
[11]. Since the ideal filter cannot be realized, approxi-
mation methods are also proposed, see in particular [12],
[13].

On the other hand, real signals such as audio sig-
nal (esp. orchestral music) breaks the band-limiting as-
sumption in the sampling theorem, that is, they have
some frequency components beyond the Nyquist fre-
quency. In view of this, we have to take account of
the whole frequency range in designing interpolation sys-
tems. Sampled-dataH∞ optimization [1], [7] is very ad-
equate for this purpose.

In this article, we first define nonuniform decima-
tion/interpolation. This definition includes the block dec-
imation introduced in [8]. Then we formulate the interpo-
lation problem as a sampled-data H∞ optimization. The
optimal filter is given by a periodic system, which can be
realized by a multirate filterbank. Design examples show
the effectiveness of our method. Moreover, we consider
by examples what is the optimal decimation pattern. We
show that although the decimation rate is the same, the
optimal value can differ if the pattern differs. That is,
the performance depends on the decimation pattern. This
property can be used in designing signal compression.

2. NONUNIFORM DECIMATION AND
INTERPOLATION

Consider a discrete-time signal x := {x0, x1, x2, . . .}
shown in Fig. 1. Then nonuniform decimation byM :=
[1, 1, 0] (we call this a decimation pattern) is defined as
follows (see Fig. 2).

(↓M)x := {x0, x1, x3, x4, x6, . . .}. (1)

That is, we first divide the time axis into segments of
length three (the number of the elements of M ), then,
in each segment, retain the samples corresponding to 1
inM and discard the one corresponding to 0. This deci-
mation includes so-called block decimation, in which the
first R1 samples of each segment of R2 samples are re-
tained while the rest are discarded [8]. By using our nota-
tion, the block decimation R2 : R1 is represented as ↓M
with

M = [1, . . . , 1� �� �
R1

, 0, . . . , 0� �� �
R2−R1

].

Then we consider interpolation. First, we define the
nonuniform expander ↑M withM = [1, 1, 0] by

(↑M)x := {x0, x1, 0, x2, x3, 0, x4, . . .}.
That is, we first divide the time axis into segment of
length two (the number of the elements 1 of M ), then
insert 0 into the portion corresponding to 0 in M . Ap-
plying this to the decimated sequence (1), we have

v := (↑M)(↓M)x = {x0, x1, 0, x3, x4, 0, x6, . . .}.
Then, the interpolation is completed by filtering v by a
digital filter K (see Fig. 3 (a)).

3. DESIGN OF INTERPOLATION
FILTER

3.1 Design Problem
In this section, we consider a general case where the

decimation pattern is defined by

M := [b1, b2, . . . , bM ], bi ∈ {0, 1}.
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Fig. 1 Discrete-time signal x

1 1 0 1 1 0 1 1 0 1 1 0 1

Fig. 2 Nonuniform decimation (M = [1, 1, 0])

Let i1, i2, . . . , iN (i1 < i2 < . . . < iN ) be the in-
dices of bi’s such that bi1 = · · · = biN

= 1 (N is the
number of ones in M ). Then the interpolation process
K(↑ M)(↓ M) is periodically time-varying, more pre-
cisely, it is (N,M)-periodic [6] or (N,M)-shift-invariant
[2]. By this fact, the multirate system can be equivalently
represented as a time-invariant system via discrete-time
lifting [1], which is also called polyphase decomposition
[11]. Let LM be the discrete-time lifting operator, that is,

LM : {x0, x1, . . .} �→







x0

x1

...
xM−1


 ,




xM

xM+1

...
x2M−1


 , . . .




.

By this, the interpolation process is equivalently repre-
sented as

K(↑M)(↓M) = L−1
N

�KELM , (2)

�K := LNKL−1
N , (3)

where E = [Eij ] is an N × M matrix whose elements
are defined as follows:

Eij =

�
1, (i, j) = (1, i1), (2, i2), . . . , (N, iN ),
0, otherwise.

For example, ifM = [1, 1, 0] (M = 3, N = 2, i1 = 1,
i2 = 2) then

E =
�
1 0 0
0 1 0

�
.

Note that the lifted filter �K is a time-invariant system with
N -inputs and N -outputs.
To design the interpolation filter K (or �K), consider

the error system shown in Fig. 4. In this figure, F is a lin-
ear time-invariant continuous-time system whose transfer
function is finite-dimensional and strictly proper, which
is a model of the original analog signal. The block Sh

represents the ideal sampler with sampling period h, and

↓M ↑M Kx yv

(a)

LM E �K L−1
N

x y

(b)
Fig. 3 (a) Nonuniform decimation and interpolation, (b)
lifted system

F Sh LM E �K L−1
N Hh

e−Ls

w e
−

Fig. 4 Error system

Hh the zero-order hold with the same sampling period.
The delay e−Ls is a design parameter which control the
reconstruction delay and the performance Then our prob-
lem is formulated as a sampled-dataH∞ optimization.
Problem 1: Find the optimal filter �K which minimizes

the H∞ norm (the L2-induced norm) of the error system
Tew from the continuous-time signalw to the error e. The
L2-induced norm of Tew is defined by

�Tew� := sup
w∈L2

w �=0

�Teww�2

�w�2
. (4)

Note that the norm (4) equals the H∞ norm of the
sampled-data system Tew [1]. The problem is therefore
called a sampled-data H∞ optimization problem.

3.2 Filter design and implementation
The problem formulated above is a standard sampled-

data signal reconstruction problem. The H∞ optimal fil-
ter �K can be obtained by the fast-sampling method, see
[7].
The filter K is obtained by the inverse discrete-time

lifting of (3), that is

K = L−1
N

�KLN .

Then the interpolation system is K(↑ M), see Fig.3 (a)
and the equation (2).
There is however another simpler way to implement

the interpolation system, by using a multirate filterbank,
see Fig. 5. In this filterbank, Fi1(z), Fi2(z), . . ., FiN

(z)
are obtained by the following equation:




Fi1(z)
Fi2(z)
...

FiN
(z)


 = �K(zN )�




1
z−1

...
z−N+1


 .

The uniform decimator ↓M and expander ↑M whereM
is a positive integer is defined by

y = (↓M)x, yn = xMn, n = 0, 1, 2, . . .

w = (↑M)v, wn =

�
xn/M , if n = 0,M, 2M, . . .,

0, otherwise.
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zi1−1

zi2−1

ziN−1

↓M

↓M

↓M ↑M

↑M

↑M Fi1(z)

Fi2(z)

FiN
(z)

+

+

Fig. 5 Nonuniform filterbank

+
↓3 ↑3 F1(z)

F2(z)↑3↓3z

Fig. 6 Nonuniform filterbank (M = [1, 1, 0])

By using our definition of nonuniform decimator and ex-
pander, the uniform ones are given by

↓M =↓M , ↑M =↑M , M = [1, 0, 0, . . . , 0� �� �
M−1

].

Fig. 6 shows an example of a nonuniform filterbank when
M = [1, 1, 0].

4. DESIGN EXAMPLES

In this section, we show design examples.

4.1 Optimal filter design
Here we design the optimal filter K (or Fi1 ,. . . FiN

in
Fig. 5). The design parameters are as follows: the deci-
mation vector M = [1, 1, 0], the sampling period h = 1,
the time delay L = 12. The analog characteristic of the
continuous-time input signals is modeled by

F (s) =
1

10s + 1
. (5)

For comparison, we adopt the method of Hilbert trans-
former [12], [11] as a conventional one. Note that this
method is based on the sampling theorem, assuming that
the original analog signal is fully band-limited up to the
frequency ω = 2π/3 (2/3 of the Nyquist frequency π).
Note also that the conventional filter requires very large
delay (L = 61.5). Fig. 7 shows the frequency responses
of the error system Tew shown in Fig. 4. The conventional
interpolation shows a large error in high frequency, while
the sampled-data H∞ optimal interpolation shows a flat
response. To illustrate the difference between these re-
sponses, we simulate interpolation of a rectangular wave.
Fig. 8 shows the time response. The conventional interpo-
lation causes large ripples, while our interpolation shows
a better response. This is because the rectangular wave
has high frequency components around the edges, and
our interpolation takes account of such frequency com-
ponents.
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Fig. 7 Frequency response: proposed (solid) and con-
ventional (dots)
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Fig. 8 Time response: proposed (solid), conventional
(dash), and input signal(dots)

4.2 Decimation pattern analysis
Consider M = 3 and N = 2. Then there are three

patterns of decimation: M1 = [1, 1, 0], M2 = [1, 0, 1],
and M3 = [0, 1, 1]. These are essentially the same except
for delays, that is,

z−1(↑M2)(↓M2) = (↑M1)(↓M1)z−1,

(↑M3)(↓M3)z−1 = z−1(↑M1)(↓M1).

The optimal values of our H∞ optimization for these
decimations are therefore the same. However, when M =
4 and N = 2, there can be difference. In this case, the es-
sential patterns are M = [1, 1, 0, 0] or M = [1, 0, 1, 0].
Set the design parameters F (s) as (5), h = 1, and L = M
(the length of the segment). Table 1 shows the optimal
values γ = min �Tew� (see (4)). This result shows that
the pattern M = [1, 0, 1, 0] (or M = [0, 1, 0, 1]) is the
better, which is equals to the uniform decimation ↓2.

We then design when the segment length M = 5. Ta-
ble 2 shows the result. By this, the optimal value γ de-
pends on the position of the zeros in M , not depends on
the number of the ones in M . For example, although the
pattern (F) retains more samples than the pattern (E), the
optimal values are the same. Table 3 shows the optimal
γ when M = 7 and N = 4. In this case, there are 5 the
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Table 1 Optimal value γ forM = 4 and N = 2

Decimation Pattern γ

0.2293
M = [1100], [1001], [0110], [0011]

0.1529
M = [1010], [0101]

Table 2 Optimal value γ forM = 5 and N = 1, 2, 3, 4

Pattern γ Pattern γ

0.3813 0.2303
(A) (D)

0.3062 0.1536
(B) (E)

0.2303 0.1536
(C) (F)

essential patterns (A) to (E). We can see that γ depends
on the maximal number of the consecutive zeros in M
(we here call this the consecutive number).
The results shows that the reconstruction performance

depends on the consecutive number and not on the num-
ber of retained samples. By this observation, we can con-
jecture that the optimal decimation patternM is the pat-
tern in which the zeros are least consecutive. In other
words, most uniformly distributed pattern is the best. In
view of this, the block decimation introduced in [8] can-
not be optimal.

5. CONCLUSION

We have proposed an interpolation method of nonuni-
form decimation via sampled-data H∞ optimization. By
a design example we have shown the effectiveness of our
method. We have also suggested by examples that there
can be the optimal decimation pattern.
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