Multirate Signal Reconstruction and Filter Design via Sampled-Data H^∞ Control

Yutaka Yamamoto1 Masaaki Nagahara2 Hisaya Fujioka3

Abstract

This paper studies the problem of digital signal reconstruction in the multirate framework. In contrast to the typical digital domain formulation in the current digital signal processing, we present a solution that optimizes an H^∞ analog performance, via the modern sampled-data control. While the standard technique often indicates that an ideal digital low-pass filter is preferred, we show that the optimal solution need not be an ideal low-pass when the signal is not completely band-limited. The present method also suggests a new filter design method without recourse to analog filter designs. A design example is presented to show the advantages of the present method.

1 Introduction

Multirate techniques are now quite popular in the digital signal processing. They are particularly effective in subband coding, and various techniques for economical information saving has been developed \cite{3, 9, 10}.

They are also standard in signal decoding in audio/speech processing. For example, in the commercial CD format, the sampling frequency is 44.1 kHz, but one hardly employs the same sampling period in decoding. A popular technique is to first upsample the encoded digital signal, cut the parasitic imaging components via a digital low-pass filter, and then convert it back to an analog signal with a hold device and an analog low-pass filter. The chief advantage here is that one can employ a fast hold device, and need not use a very sharp analog filter (thereby avoiding much phase distortion induced by a sharp analog filter).

In the existing literature, it is a commonly accepted principle that one inserts a very sharp digital low-pass filter after the upsampler to eliminate the effect of imaging components \cite{9, 10}. This is based on the following reasoning: Suppose that the original signal is fully band-limited. Then the imaging components induced by upsampling is not relevant to the original signal and hence must be removed by a low-pass filter. If the original signal is band-limited, the closer this filter is to an ideal filter, the better.

In practice, however, no signals are entirely band-limited in a practical range of a passband, and they obey only an approximate frequency characteristic. The argument above is thus valid only in an approximate sense. One may rephrase this as a problem of robustness: namely, when the original signals are not fully band-limited but obey only a certain frequency characteristic, how close should the digital filter be to the ideal low-pass filter?

This type of question has been seldom addressed in the signal processing literature until very recently. However, this can be properly placed in the framework of sampled-data control, and there are now several investigations that apply the sampled-data control methodology to digital signal processing. Among them, Chen and Francis \cite{2} solves the design of multirate filter banks in the discrete-time H^∞ setting; Khargonekar and Yamamoto \cite{5} formulates and solves a single-rate signal reconstruction problem with optimal analog H^∞ performance. This has been generalized in \cite{6, 7} to a multirate context. A multirate D/A conversion has been studied in \cite{4}

We will formulate a digital signal reconstruction problem under the following assumptions:

- the original analog signal is subject to a certain frequency characteristic, but not fully band-limited;
- the digital signal can be upsampled to employ a faster hold device;
- Overall analog H^∞ performance must be optimized.

This may also be regarded as an optimal D/A converter design. We will show that performance improvement is possible over a conventional low-pass filter. It is also seen that presented method can be used a new design method for a low-pass filter.

1Department of Applied Analysis and Complex Dynamical Systems, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, JAPAN Email: yys1.kyoto-u.ac.jp; all correspondence should be addressed to the first author.2nagahara@acs.i.kyoto-u.ac.jp 3fujio@acs.i.kyoto-u.ac.jp
Consider the block diagram Fig. 1. The incoming signal w_c first goes through an anti-aliasing filter $F(s)$ and the filtered signal y_c becomes nearly (but not entirely) band-limited. $F(s)$ governs the frequency-domain characteristic of the analog signal y_c. This signal is then sampled by S_h to become a discrete-time signal y_d with sampling period h. This signal is usually stored or transmitted with some media (e.g., CD) or a channel.

To restore y_c we usually let it pass through a digital filter, a hold device and then an analog filter. The present setup however places yet one more step: The discrete-time signal y_d is first upsampled by $\uparrow M$:

$$\uparrow M : y_d \mapsto x_d : x_d[k] = \begin{cases} y_d[l], & k = MI, \ l = 0,1,\ldots \\ 0, & \text{otherwise} \end{cases}$$

by factor M, and becomes another discrete-time signal x_d with sampling period h/M. The discrete-time signal x_d is then processed by a digital filter $K(z)$, becomes a continuous-time signal u_c by going through the 0-th order hold $\mathcal{H}_{h/M}$ (that works in sampling period h/M), and then becomes the final signal by passing through an analog filter $P(s)$. An advantage here is that one can use a fast hold device $\mathcal{H}_{h/M}$ thereby making more precise signal restoration possible. The objective here is to design the digital filter $K(z)$ for given $F(s)$, M and $P(s)$.

Fig. 2 shows the block diagram for the error system for the design. The delay in the upper portion of the diagram corresponds to the fact that we allow a certain amount of time delay for signal reconstruction. Let T_{ew} denotes the input/output operator from w_c to $e_c := z_c(t) - u_c(t - mh)$. Our design objective is as follows:

Problem 1 Given stable $F(s)$ and $P(s)$ and an attenuation level $\gamma > 0$, find a digital filter $K(z)$ such that

$$||T_{ew}|| := \sup_{w_c \in l^2} \frac{||T_{ew}w_c||_2}{||w_c||_2} < \gamma. \quad (1)$$

3 Reduction to A Finite-Dimensional Problem

A difficulty in Problem 1 is that it involves a continuous time-delay, and hence it is an infinite-dimensional problem. Another difficulty is that it contains the up-sampler $\uparrow M$, so that it makes the overall system time-varying.

Following the method of [5, 6], however, we can reduce this problem to a finite-dimensional single-rate problem:

Theorem 1 There exist (finite-dimensional) discrete-time systems $G_1(z)$, $G_2(z)$ such that (1) is equivalent to

$$||z^{-M}G_1(z) - \widetilde{K}(z)G_2(z)||_\infty < \gamma; \quad (2)$$

where $\widetilde{K}(z)$ is the discrete-time lifting of $K(z)$.

Proof: We first reduce the problem to a single-rate problem. Define the discrete-time lifting L_M and its inverse L_M^{-1} by

$$L_M := (\downarrow M) \begin{bmatrix} 1 \\ z \\ \vdots \\ z^{M-1} \end{bmatrix} (\uparrow M),$$

where $\downarrow M$ denotes the downsampler

$$\downarrow M : x_d \mapsto y_d : y_d[k] = x_d[kM].$$

Then $K(z)(\uparrow M)$ can be rewritten as

$$K(z)(\uparrow M) = L_M^{-1} \widetilde{K}(z)$$

where

$$\widetilde{K}(z) := L_M K(z) L_M^{-1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

$\widetilde{K}(z)$ is an LTI, single-input/M-output system that satisfies

$$K(z) = [1 \ z^{-1} \ \ldots \ z^{-M+1}] \widetilde{K}(z^M).$$

Using the generalized hold $\tilde{\mathcal{H}}_h$ defined by

$$\tilde{\mathcal{H}}_h : l^2 \ni v \mapsto u \in l^2, \ u(kh + \theta) = H(\theta)v[k] \quad \theta \in [0,h), \ k = 0,1,2,\ldots$$

$$H(\theta) := \begin{cases} [1 \ 0 \ 0 \ \ldots \ 0], & \theta \in [0,h/M) \\ [0 \ 1 \ 0 \ \ldots \ 0], & \theta \in [h/M,2h/M) \\ \ldots \end{cases}, \quad \theta \in [(M-1)h/M,h]$$

$$\tilde{\mathcal{H}}_h := \begin{bmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \end{bmatrix},$$
we obtain the identity
\[\mathcal{H}_{h/M} \mathbf{L}_M^{-1} = \tilde{\mathcal{H}}_h. \]
This yields
\[\mathcal{H}_{h/M} K(z)(\uparrow M) S_h = \tilde{\mathcal{H}}_h \tilde{K}(z) S_h. \]
Hence Fig. 2 is equivalent to Fig. 3. We can then invoke the technique of [5] to reduce this to a finite-dimensional design problem (2).

4 Approximation via Fast Sample/Hold

While the procedure above reduces Problem 1 to a finite-dimensional \(H^\infty \) problem, it is in general not numerically suitable for actual computation; the formulas are quite involved, and not so numerically tractable. It is often more convenient to resort to an approximation method. We employ the fast sample/hold approximation [1, 6]. This method approximates continuous-time inputs and outputs via a sampler and hold that operate in the period \(h/M \). The convergence of such an approximation is guaranteed in [8].

Note first that Fig. 3 yields the generalized plant formulation Fig. 4. We connect fast sample and hold devices \(S_{h/N}, \mathcal{H}_{h/N} \) with the plant as shown in Fig. 5. The resulting discrete-time approximant is given by the following formulas (\(N = M I, I : \text{positive integer} \)):

\[
G_{dN}(z) := \begin{bmatrix}
A_d & B_{N_1} & B_{N_2} \\
C_{N_1} & D_{N_11} & D_{N_12} \\
C_{N_2} & 0 & 0
\end{bmatrix}
\]

Then our design problem (1) is approximated as
\[
\|z^{-\tau} G_{dN11}(z) + G_{dN12}(z) \tilde{K}(z) G_{dN21}(z) \|_\infty < \gamma.
\]
where
\[
\begin{bmatrix}
G_{dN11}(z) & G_{dN12}(z) \\
G_{dN21}(z) & 0
\end{bmatrix} = G_{dN}(z).
\]
The resulting discrete-time problem is as depicted in Fig. 6.
5 A Design Example

5.1 Design for Upsampling Factor $M = 4$
We first present a design example for

$$F(s) = \frac{1}{(10s + 1)^2}, \quad P(s) = 1$$

with $h = 0.1$, $m = 2$ and upsampling factor $M = 4$. (In commercial CD players, M is usually $8 \sim 32$.) An approximate design is executed here for $N = M \times 4 = 16$.

Fig. 7 shows the (discrete-time) gain plots of three filters: $K_{SD}(z)$ designed by the present method, $K_{DT}(z)$ obtained by the simple discrete-time H^∞ design, and an FIR digital filter $K_L(z)$ by Lagrange interpolation.

The gain characteristics appear to be quite similar, although around 100 rad/sec, the present method shows more attenuation. The difference among them becomes clearer when we plot the gain plots of the respective error systems (Fig. 8)\(^1\). The present method exhibits a clear advantage over all frequency range. Table 1 also shows the order and $\|T_{ew}\|$ of each filter.

Table 2 shows the (sub)optimal value of $\|T_{ew}\|$ for different M's. Larger M's result in better reconstruction results as naturally expected.

Fig. 9 and 10 show the time response against $w_c(t) = \sin 0.1t$ for the filter K_{SD} designed for $M = 4$. They exhibit very high precision in reconstruction.

5.2 Design for Upsampling Factor $M = 2$
For comparison, we also present design results for $M = 2$ and compare it with the Johnston filter of order 31, which is often used in commercial applications.

As above, our sampled-data design has been executed

\(^1\)Note that the Nyquist frequency here corresponds to the original sampling period $h = 0.1$, and hence is 31.4 [rad/sec], whereas Fig. 7 the range is much wider corresponding to the upsampling of $M = 4$

\[\begin{array}{|c|c|c|}
\hline
\text{Filter} & \text{Order} & \|T_{ew}\| \\
\hline
\text{sampled data } H^\infty \text{ IIR} & 15 & 3.8 \times 10^{-4} \\
\text{sampled data } H^\infty \text{ FIR} & 19 & 3.8 \times 10^{-4} \\
\text{discrete time } H^\infty \text{ IIR} & 15 & 6.9 \times 10^{-4} \\
\text{discrete time } H^\infty \text{ FIR} & 19 & 6.9 \times 10^{-4} \\
\text{Lagrange filter} & 14 & 7.7 \times 10^{-4} \\
\hline
\end{array}\]

\[\begin{array}{|c|c|}
\hline
\text{Table 2: Upsampling factor } M \text{ and } \|T_{ew}\| \\
\hline
M & \|T_{ew}\| \\
\hline
1 & 1.4 \times 10^{-3} \\
2 & 7.4 \times 10^{-4} \\
4 & 3.8 \times 10^{-4} \\
6 & 2.5 \times 10^{-4} \\
8 & 1.9 \times 10^{-4} \\
\hline
\end{array}\]
for

\[F(s) = \frac{1}{(10s + 1)^2}, \quad P(s) = 1 \]

with \(h = 0.1, \ m = 2 \), with the difference: \(M = 2 \).

The obtained (sub)optimal filter \(K_{SD}(z) \) is of order 7. Just for comparison, we have also obtained a purely discrete-time design \(K_{DT}(z) \) which is again of order 7. \(K_L(z) \) denotes the Lagrange filter of order 30, and \(K_J(z) \) is the Johnston filter of order 31.

Fig. 11 shows the gain characteristics of these filters. The Johnston filter shows the sharpest decay beyond the cutoff frequency \((\pi/h \ [\text{rad/sec}])\) and the sampled-data design shows a rather slow decay. On the other hand, the reconstruction error characteristic in Fig. 12 exhibits quite an admirable performance in spite of the low-order of \(K_{SD}(z) \) and small upsampling factor. It is almost comparable with 31st order Johnston filter.

While for those frequencies close to the cut-off the gain characteristic of the sampled-data design is not as good as the Johnston filter, the sampled-data designed filter need not be inferior. To see this, let us see the time responses against rectangular waves in Figs. 13, 14:

The Johnston filter exhibits a very typical Gibbs phenomenon, whereas the one by \(K_{SD}(z) \) has much less peak around the edge. We also note that \(K_{SD}(z) \) is nearly linear phase, as shown in Fig. 15.

6 Concluding Remarks

We have presented a new method of designing a digital filter in multirate signal reconstruction problem.
Figure 12: Frequency response of error system T_{ew}: sampled-data H^∞ synthesis (solid), discrete-time H^∞ synthesis (dash), Lagrange filter (dash-dot), Johnston filter (dot)

Figure 13: Time response (sampled-data syn.): $z_c(t)$ (solid), $u_c(t - mh)$ (dot)

Figure 14: Time response (Johnston filter): $z_c(t)$ (solid), $u_c(t - mh)$ (dot)

Figure 15: Phase plot of $K_{SD}

About 6-8 dB improvement is accomplished in comparison with a typical digital filter.

References

p. 6