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Abstract: Fractional delay filters are those that are designed to delay the input samples by a
fractional amount of the sampling period. Since the delay is fractional, the intersample behavior
of original analog signals becomes crucial. For this, we propose an optimal design via sampled-
data H∞ control theory. By this theory, our design problem is equivalently reduced to a discrete-
time H∞ optimization, and, an analytical solution is obtained under an assumption on the
original analog signals. Using this analytical solution, we propose a sampling rate conversion
with arbitrary conversion rate. This conversion is much faster than conventional methods using
an upsampler, a digital filter, and a downsampler. We also show an application of the proposed
sampling rate conversion to pitch shifting of guitar sounds. A design example is shown to
illustrate the advantage of the proposed method.

Keywords: Digital signal processing, sampled-data control, sampling rate conversion, pitch
shifting.

1. INTRODUCTION

Fractional delay filters are to delay the input signal by
a fraction of the sampling period. Such a filter has wide
applications in signal processing, including digital com-
munications, speech processing and digital modeling of
musical instruments [Laakso et al. (1996); Välimäki and
Laakso (2000)].

Conventionally, fractional delay filters are designed in
the discrete-time domain by assuming that the incoming
continuous-time signals are fully band-limited up to the
Nyquist frequency. Under this assumption, the optimal
fractional delay filter is given by a delayed sinc function.
Such a filter is however not realizable because of its non-
causality and instability, and hence many studies have
focused on approximating the ideal filter [Laakso et al.
(1996); Hermanowicz (1992); Pei and Wang (2004)].

Although these studies are based on the band-limiting
assumption, no real analog signals are fully band-limited,
and hence the assumption is not realistic. Moreover, by
their very nature, fractional delay filters should recon-
struct intersample signal values. It is, therefore, necessary
for designing the filters to take account of high-frequency
components beyond the Nyquist frequency and the inter-
sample behavior of input analog signals.

For such problems, sampled-data control theory provides
an optimal platform. Based on this theory, the design
problem of fractional delay filters has been formulated as a
sampled-data H∞ optimization [Nagahara and Yamamoto

(2003, 2005)]. In particular, the analytical expression for
the H∞ optimal fractional delay filter is given under the
assumption that the underlying frequency characteristic of
the continuous-time input signal is governed by a low-pass
filter of first order.

By this analytical solution, we propose a method for fast
sampling rate conversion. Conventionally, sampling rate
conversion is executed by an upsampler, a digital filter
and a downsampler [Vaidyanathan (1993)]. This scheme
is effective if the conversion rate is a fraction of small
integers (e.g., 2/3). It however seriously increases the
computation load when both integers become very large,
e.g., 44100/48000= 147/160 as in CD to DAT conversion
[Zölzer (2008)]. Moreover, if the rate is an irrational
number, this scheme cannot be used. On the other hand,
by using the fractional delay filters, we can convert digital
signals with arbitrary positive real rate [Ramstad (1984)].
In addition, while conventional design of the digital filter
in sampling rate conversion depends on the band-limiting
assumption mentioned above, our design can take account
of analog characteristic of input signals.

By using this sampling rate converter, we propose a new
pitch shifting method. Pitch shifting is a technique for
raising or lowering the original pitch of audio signals.
This is often used in synthesizing musical tone from a
recorded signal of a musical instrument with a fixed
fundamental frequency [Roads (1996)]. A naive method
of pitch shifting does not conserve the signal length, for
example, if the pitch is made higher, the length becomes
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Fig. 1. (a) continuous-time signal v(t), (b) delayed signal

v(t − D), (c) sampled signal v(nT ), (d) delayed and
sampled signal v(nT − D)

short. To conserve the length, we also propose a method
by adding (or cutting) the shifted signal.

The article is organized as follows. Section 2 defines
fractional delay filters, and formulates the design problem
as a sampled-data H∞ optimization and show its solution.
In Section 3, we propose a new sampling rate conversion
method based on sampled-data H∞ optimal fractional
delay filters, and propose a method for conservation of the
signal length. Numerical examples are shown in Section
4 to illustrate the superiority of the proposed method.
Section 5 makes a conclusion.

2. DESIGN OF FRACTIONAL DELAY FILTERS

2.1 Fractional delay filters

Consider a continuous-time signal v(t), t ∈ R+ as shown in
Fig. 1 (a). Delaying the signal v(t) by the continuous-time
delay operator e−Ds (D > 0), we obtain the delayed signal
v(t − D) shown in Fig. 1 (b). Then the signal v(t − D) is
sampled with period T and becomes a discrete-time signal
v(nT − D), n ∈ Z+ as shown in Fig. 1 (d).

On the other hand, consider the sampled signal v(nT ), as
shown in Fig. 1 (c). Then we define the ideal fractional
delay filter as follows:
Definition 1. The ideal fractional delay filter K id with
delay time D is defined by

K id : v(nT ) �→ v(nT − D).

Note that if the delay D is an integer multiple of the
sampling period T , that is, D = mT , m ∈ Z+, the ideal
filter K id is the discrete-time delay z−m. Moreover, if
the input analog signal v(t) is fully band-limited up to
the Nyquist frequency ωN := π/T , that is, the Fourier
transform V (jω) of v(t) vanishes at |ω| ≥ ωN , the impulse
response of the ideal fractional delay filter is obtained as
follows [Laakso et al. (1996)]:

kid[n] =
sin π(nT − D)/T

π(nT − D)/T
= sinc

[
(nT − D)

T

]
,

n = 0,±1,±2, . . . , sinc t := (sin πt)/(πt).
(1)
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Fig. 2. Error system E for designing fractional delay filter
K(z)

The frequency response of this ideal filter is derived by the
Fourier transform:

K id(ejωT ) = e−jωD, ω ≤ ωN . (2)

Since the impulse response (1) does not vanish at n =
−1,−2, . . . and is not absolutely summable, the ideal filter
must be noncausal and unstable, and hence the ideal
filter cannot be realized. Conventional designs thus aim
at approximating (1) or (2) to a causal and stable filter
via a window method, maximally-flat FIR approxima-
tions, weighted least-squares approximation, and so forth
[Laakso et al. (1996)].

These methods are based upon the band-limiting assump-
tion as mentioned above. In practice, however, real analog
signals always contain some frequency components beyond
the Nyquist frequency. In what follows, we formulate the
design problem of fractional delay filters without such an
assumption by using the sampled-data H∞ optimization.

2.2 Design problem of fractional delay filters

Consider the block diagram Fig. 2. In this diagram, F (s)
governs the frequency-domain characteristic 1 of the input
signal w ∈ L2. Then, the upper path of the diagram is
the ideal process of the fractional delay filter (the process
(a) → (b) → (d) in Fig. 1), that is, the continuous-time
signal v is delayed by the continuous-time delay e−Ds, then
sampled with period T , and becomes a discrete-time signal
zd ∈ �2. On the other hand, the lower path is the real
process ((a) → (c) → (d) in Fig. 1), that is, the continuous-
time signal v is sampled with period T , filtered by K(z) to
be designed, and becomes a discrete-time signal ud ∈ �2.

Put ed := zd −ud (the difference between the ideal output
zd and the real output ud), and let E denote the system
from w ∈ L2 to ed ∈ �2. Then our problem is to find the
filter K(z) which minimizes the H∞ norm of the error
system E .
Problem 1. Given a stable, strictly proper F (s), a delay
time D > 0, and a sampling period T > 0, find the digital
filter K(z) which minimizes

‖E‖∞ := sup
w∈L2

w �=0

‖ed‖�2

‖w‖L2
. (3)

2.3 Design of Optimal Filters

Assume the delay D is decomposed by
D = mT + d,

1 Conventionally, F (s) is assumed to be an ideal filter such that
F (jω) = 0, |ω| ≥ ωN (the Nyquist frequency).



where m is a non-negative integer and 0 < d ≤ T . Assume
also that the filter F (s) is a first-order low-pass filter with
cutoff frequency ω = ωc, that is,

F (s) =
ωc

s + ωc
.

Then the H∞ optimal filter K(z) which minimizes (3) can
be obtained with an analytical representation [Nagahara
and Yamamoto (2003, 2005)]:
Theorem 1. The optimal filter K(z) is obtained by

K(z) = a0(d)z−m + a1(d)z−m−1, (4)
where

a0(d) :=
sinh (ωc(T − d))

sinh(ωcT )
, a1(d) := e−ωcT (eωcd − a0).

(5)
Moreover, the optimal value of ‖E‖∞ is

‖E‖∞ :=

√
ωc sinh(ωcd) sinh(ωc(T − d))

sinh(ωcT )
. (6)

Remark 2. When d = 0, the formula (5) gives a0(0) = 1,
a1(0) = 0 and the optimal filter in (4) becomes K(z) =
z−m. Also when d = T , we have a0(T ) = 0, a1(T ) = 1,
and the optimal filter becomes K(z) = z−m−1. In both
cases, the optimal value of ‖E‖∞ given in (6) becomes 0,
that is, perfect reconstruction.
Remark 3. Since sinh(x) ≈ x and e−x ≈ 1 − x when x is
sufficiently small, we have

a0(d) ≈ ωc(T − d)
ωcT

=
T − d

T
,

a1(d) ≈ 1 − ωc(T − d) − (1 − ωcT ) · T − d

T
=

d

T
,

when ωcT is sufficiently small, that is, when the frequency
ωc is much smaller than the sampling frequency 1/T . Then
the optimal filter becomes

K(z) =
T − d

T
z−m +

d

T
z−m−1.

This is the linear interpolation between two points yd[m]
and yd[m + 1]. In other words, if the original signals
contain very few high-frequency components relative to
the sampling frequency 1/T and the decay of the Fourier
transform is the first order, then the linear interpolation
is approximately optimal.

3. FAST SAMPLING RATE CONVERSION AND
PITCH SHIFTING

3.1 Fast sampling rate conversion

Consider a continuous-time signal {v(t)}t∈R+ . Assume
that we are given sampled data v[m] := v(mT ), m ∈ Z+

where T > 0 is a sampling period. Then we execute
sampling rate conversion on this discrete-time signal. By
r, we denote the conversion rate. We assume r is a
positive real number. Then sampling rate conversion aims
at estimating the values of {v(krT )}k∈Z+}. Since we miss
the intersample values of {v(t)}t∈R+ , the exact estimation
is impossible.

Conventionally, this estimation is done by an upsampler,
a digital filter and a downsampler [Vaidyanathan (1993);
Zölzer (2008)]. Fig. 3 shows this scheme. As mentioned

↑Mr H(z) ↓Nr
v vr

Fig. 3. Sampling rate conversion by upsampler-filter-
downsampler system. The rate is r = Nr/Mr where
Mr and Nr are positive integers.

mT (m + 1)TkrT

v(mT )
v((m + 1)T )

dk

v(t)

t

v(krT )

Fig. 4. The value v(krT ) is given by shifting v(t) by
dk = (m + 1)T − krT and sampling at t = (m + 1)T .

in Section 1, this scheme cannot be used if the rate r is
irrational.

Alternatively, we adopt a sampling rate conversion by
using fractional delay filters [Ramstad (1984)]. In this con-
version, we use the sampled-data H∞ optimal fractional
delay filter given in Theorem 1. Let us consider estimation
of the value v(krT ) where k is a positive integer. Assume
that the time krT satisfies mT < krT ≤ (m + 1)T where
m is a non-negative integer. Let dk := (m + 1)T − krT .
Then we have

v(krT ) = v ((m + 1)T − (m + 1)T + krT )
= v ((m + 1)T − dk)
= v(t − dk)|t=(m+1)T .

That is, the value v(krT ) is obtained by delaying v(t) by dk

and sampling at time t = (m+1)T (see Fig. 4). Therefore,
the estimation vr[k] for v(krT ) can be obtained by the
fractional delay filter given in (4) as

vr[k] = a0(dk)v ((m + 1)T ) + a1(dk)v(mT ),
where a0(·) and a1(·) are given in (5). Note that this
filter is a two-tap FIR filter and the estimation needs
much fewer computation than the conventional scheme
shown in Fig. 3. Also we emphasize that the computation
load is the same for arbitrary real rate r while that of
the conventional scheme increases the load when Nr and
Mr are large. This is an advantage over conventional
methods in the case of real-time processing. In addition,
while conventional design of the digital filter in sampling
rate conversion depends on the band-limiting assumption
mentioned above, our design can take account of analog
characteristic of input signals.

The algorithm of the proposed sampling rate conversion
is shown in Algorithm 1. In this algorithm, we define
v[m] := v(mT ), m = 0, 1, 2, . . ..

3.2 Pitch shifting

Pitch shifting is a technique for raising or lowering the
original pitch of audio signals. To accomplish this, we
can use a sampling rate converter; convert the sampling
period T to rT with r > 0, and play the converted signal
with the original sampling period T . By this process, we
have a raised (if r > 1) or lowered (if r < 1) pitch. For



Algorithm 1 Sampling rate conversion
vr[0] := v[0]
k := 1
for m = 0, 1, 2, . . . do

while kr ≤ m + 1 do
d := (m + 1)T − krT
vr[k] := a0(d)v[m + 1] + a1(d)v[m]
k := k + 1

end while
end for

(a)

(b)

(c)
Fig. 5. Pitch shifting by sampling rate converter: (a)

original digital signal, (b) sampling rate conversion,
and (c) pitch sifting by processing the signal in (b)
with the same sampling rate as (a).

example 2 , the pitch 110 Hz, that is A2 note is converted
to D3 note (110 × 25/12 ≈ 146.83 Hz) with r = 2−5/12.
This is analogous to listening to music by fast- or slow-
forwarding a cassette tape. This process is effectively done
by the proposed algorithm (Algorithm 1) if the sound is
given by digital data. We illustrate this process in Fig. 5.

A problem of this process is that the length of signal
is also changed (compare (a) and (c) in Fig. 5). Let L
be the length of the original signal. Then if we shift its
pitch by Algorithm 1 with rate r > 1, the length of the
converted signal will be L/r < L. To adjust the length,
we should fill in a signal whose length is L − L/r. When
r < 1, then cut out a signal whose length is L/r − L. To
execute this, we split the original signal into attack and
decay portions [Roads (1996)]. Fig. 6 shows an example of
this representation. The attack is the transient response of
the sound, and it is known that this portion plays the most
important role in distinguishing a particular instrument
[Risset and Wessel (1998)]. On the other hand, the decay
is the steady-state response with decay. Fig. 7 shows a part
of this stage. We can see that the signal in this portion is

2 In this article, we consider equal temperament [French (2009)].
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Fig. 6. Guitar sound with the fundamental frequency 110
Hz (A2) split into attack and decay portions
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Fig. 7. Decay: locally periodic signal with the fundamental
frequency 110 Hz (A2)

locally a periodic signal. Based on this fact, we split the
processing in two stages.

The first stage is for the attack portion. Let L0 > 0 be
the length of the attack signal. We convert this signal by
Algorithm 1 with r, and we obtain a signal with length
L0/r. The next stage is for the decay portion. We split
the decay signal (note that this signal has the length
L − L0) into N frames of equal length τ . Let f be the
fundamental frequency of the original signal and l := 1/f
be the fundamental period. We choose the frame length τ
to satisfy the following:

τ =
L − L0

L
· l

|r − 1| · n, (7)

where n is an integer satisfying

n ≥ L

L − L0
max{r − 1, r−1 − 1}. (8)

We assume that N := (L − L0)/τ is a positive integer (if
not, we truncate the original signal). Then we convert each
frame by Algorithm 1. If r > 1, we cut off the fundamental
wave with period l/r from the converted frame, and add n
pitch-shifted fundamental waves at the end of the frame.
This procedure is illustrated in Fig. 8. If r < 1, we cut
out n fundamental waves. Note that in both cases the
converted frame includes at least one fundamental wave
if (8) is satisfied. Then the length τ ′ of converted frames
becomes (see Fig. 8)



τ

l

τ/r nl/r

(a) Original frame

(b) Processed frame

Fig. 8. Processing of a frame in decay portion: (a) Original
frame with length τ and fundamental period l, (b)
Processed frame added n = 2 pitch-shifted fundamen-
tal waves.

τ ′ =
τ

r
+

l

r
· n.

Then the equation (7) gives the length of the converted
signal in the decay portion as follows

τ ′N =
(

τ

r
± nl

r

)
L − L0

τ

=
L − L0

r
± nl(L − L0)

rτ

=
1
r

(L − L0 ± L|r − 1|)

= L − L0

r
,

where the double sign corresponds to the two conditions
r > 1 or r < 1. Since the length of the converted attack
portion is L0/r, the length of the whole converted signal
becomes L, which is equal to the original length.

4. DESIGN EXAMPLES

We first demonstrate sampling rate conversion. We set the
analog filter F (s) as

F (s) =
0.1

s + 0.1
,

that is, we set ωc = 0.1. The sampling time T is set to be 1.
We consider here sampling rate conversion with irrational
rate r = 1/

√
10. The input signal is a triangle wave,

and we convert the sampling rate by Algorithm 1. For
comparison, we also execute sampling rate conversion by
the conventional scheme shown in Fig. 3. The number Mr

and Nr are given by rational approximation of r = 1/
√

10
as

Mr = 19, Nr = 6.

With this approximation, the approximation error is
bounded by

1√
10

− 6/19 < 10−3,

where we used the MATLAB function
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Fig. 9. Sampling rate conversion by the proposed method:
original signal (dash), sampled-data (×), and con-
verted data (◦)
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Fig. 10. Sampling rate conversion by the conventional
method: original signal (dash), sampled-data (×), and
converted data (◦)

rat(1/sqrt(10), 1e-3)

for Mr and Nr. The sampling rate conversion by the
scheme shown in Fig. 3 is easily executed by the MATLAB
function

resample(v,19,6)

We also obtain the filter H(z) in Fig. 3 by the same
MATLAB function, which is a 381-tap FIR filter.

The converted signals are shown in Fig. 9 (proposed
method) and Fig. 10 (conventional method). We can see
that the proposed method produces much better recon-
struction than the conventional method. In fact, the �2

norm of the reconstruction error is 0.2530 for the proposed
method and 0.4820 for the conventional one. That is, our
method is about 50% better than the conventional method
in �2 norm of the reconstruction error.

Moreover, our method requires much fewer computation
than the conventional method. The computation time for
computation by the proposed method is 0.000143 (sec),
while that by the conventional method is 0.001788 (sec).
That is, our method is about 10 times faster than the
conventional method. This shows the effectiveness of the
proposed method.
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Fig. 11. Frequency response: original signal with funda-
mental frequency 110 Hz (dots) and pitch-shifted sig-
nal with fundamental frequency 110× 25/12 ≈ 146.83
Hz (solid).

Then by using the proposed sampling rate converter, we
shift the pitch of a guitar sound with A2 (110 Hz) shown
in Fig. 6 to D3 note (110 × 25/12 ≈ 146.83 Hz). For this,
we take r = 2−5/12. Fig. 11 shows the frequency responses
of the original signal with fundamental frequency 110 Hz
(dots) and the pitch-shifted signal. The frequency response
of the shifted signal shows that the processed signal has a
valid fundamental frequency 110 × 25/12 ≈ 146.83 Hz and
the harmonics with 110 × 25/12 × n, n = 2, 3, 4.

We show another example of pitch shifting. We shift the
note A2 (110Hz) used above to A3 (220 Hz). Then the
shifted signal is again shifted down to the original note A2.
We measure the error between the original sound and the
processed one. Figure 12(a) shows the reconstruction error
by the proposed method. For comparison, we processed by
the phase vocoder [Portoff (1976); Ellis (2002)], which is
widely used in pitch shifting. Figure 12(b) shows the error
of the phase vocoder. We can see that the phase vocoder
produces much larger errors than the proposed method.
This shows effectiveness of our method.

One can listen to the processed sounds at the following
web page:

http://www-ics.acs.i.kyoto-u.ac.jp/~nagahara/ps/

5. CONCLUSION

We have presented a new method of designing variable
fractional delay filters via sampled-data H∞ optimization.
We have given the H∞ optimal filter having delay time
variable D as an adaptive variable, when the frequency
distribution of the input analog signal is modeled as a
first-order low-pass filter. Moreover, by using this optimal
filter, we propose a fast sampling rate conversion and a
new pitch shifting which conserves the signal length. A
design example shows that the proposed sampling rate
conversion exhibits a much more satisfactory performance
than conventional ones, and also the effectiveness of the
proposed sampling rate conversion. We have also shown an
example of the proposed pitch shifting. Future work may
include the design of H∞-optimal fractional delay filters
for second or higher order low-pass filters.

(a) Proposed method

(b) Phase vocoder

Fig. 12. Reconstruction error
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