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Abstract: Repetitive control has been implemented in various industrial applica-
tions to allow systems to track or reject unknown periodic signals with a fixed
period. Repetitive controllers are usually implemented by digital computers, in
which undesired ripples may occur between sampling instants. In this work, we
approach this problem via sampled-data H∞ control. We show that our approach
significantly attenuates the ripples without sacrificing the tracking performance.
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1. INTRODUCTION

Repetitive control (Nakano et al., 1989) is a con-
trol to be designed for tracking periodic refer-
ence signals and for rejecting periodic distur-
bances. It has been widely implemented in var-
ious industrial applications. For example, high
accuracy tracking in magnet power supply for
proton synchrotron (Inoue et al., 1981), control
of robot manipulators which carry out repetitive
tasks (Omata et al., 1987), and so forth.

From a practical point of view, it is easier to im-
plement the repetitive controllers digitally. Digital
repetitive controllers can make the steady-state
tracking error vanish at the sampling instants,
due to the internal model principle (Nakano et
al., 1989). However, the output of the plant is
still continuous-time, and it is well-known that
digital repetitive control may result in undesired
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ripples between the sampling instants (Nakano et
al., 1989; Hara et al., 1990).

There are several literatures on digital repetitive
control systems investigating the ripples phenom-
ena (Franklin and Emami-Naeini, 1986; Urikura
and Nagata, 1987; Hara et al., 1990). These re-
searches are, however, in the discrete-time. To
tackle the ripple phenomenon, we have to con-
sider the intersample behavior. Therefore, we
strongly propose to introduce sampled-data con-
trol (Chen and Francis, 1995) into repetitive con-
trol. Sampled-data control can take the intersam-
ple behavior into account, and hence the ripples
in repetitive control systems can be naturally
considered. From this point of view, several ar-
ticles have studied repetitive control via sampled-
data control (Langari and Francis, 1998; Ishii and
Yamamoto, 1998). Langari and Francis propose
to design the controller by using the induced
power-norm (Langari and Francis, 1998), while
Ishii and Yamamoto take the L2 induced norm
(i.e., H∞ norm) and the optimal filter is period-
ically time-varying (Ishii and Yamamoto, 1998).
Based on these researches, we propose a design
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Fig. 1. Sampled data repetitive control system

method to find the H∞ optimal linear time-
invariant controller via sampled-data H∞ con-
trol. Although sampled-data systems are gener-
ally infinite-dimensional, we introduce the fast-
sampling/fast-hold approximation (Yamamoto et
al., 1999; Yamamoto et al., 2002) to make the sys-
tem finite-dimensional. By a numerical example,
we show that our repetitive controller attenuates
the intersample ripples, and simultaneously main-
tains excellent tracking performance.

2. PROBLEM FORMULATION

Consider the repetitive control system shown in
Figure 1, where the signal r is the reference input
and y is the plant output. In this block diagram,
P (s) is a continuous-time plant to be controlled,
F (s) an anti-aliasing filter, and W (s) a frequency
weight of the error e to be estimated. We assume
that the plant P (s) is strictly proper, the filter
F (s) and the weighting function W (s) are strictly
proper and stable. We have two controllers in the
diagram; Q[z] is the repetitive controller:

Q[z] =
1

zM − 1
(1)

and K[z] is a digital controller (assumed to be
proper and linear time-invariant) to stabilize the
feedback system and to improve the performance.
While the controllers are discrete-time systems,
the plant is a continuous-time one, and hence we
have the sampler Sh and the zero-order hold Hh

where h is the sampling time.

Our objective here is to

• make the tracking error e(t) vanish at the
sampling instants t = kh (k ∈ Z) as k → ∞,

• attenuate the intersample ripples between
the sampling instants.

The former is achievable by the repetitive con-
troller (1) because of the internal model princi-
ple (Nakano et al., 1989). Define the filtered and
sampled error ed[k] := (ShFe)[k] = (Fe)(kh),
k = 0, 1, 2, . . . , then we have the following the-
orem:

Theorem 1. Assume that the controller K[z] in-
ternally stabilizes the feedback system shown in
Figure 1, and M = T/h is a positive integer. Then,
we have

lim
k∈Z

k→∞
ed[k] = 0.

Remark 2. The sampled signal of e(t), that is,
e(kh), k = 0, 1, 2, . . . , will not vanish as k →
∞. Let the reference signal r(t) be a sinusoidal
function ejω0t, ω0 := 2π/T , then the steady state
response of e(t) is given as follows (Yamamoto and
Araki, 1994):

e(t) = ejω0t − 1
h

∞∑
n=−∞

P (jωn)Hh(jωn)

× Sd[ejω0h]K̃[jω0h]F (jω0)ejωnt,

(2)

where

K̃[z] := K[z]Q[z],

Sd[z] :=
{

1 + K̃[z]Gd[z]
}−1

,

Gd[z] := (ShPFHh)[z],

Hh(s) :=
1 − e−sh

s
,

ωn := ω0 +
2πn

h
, n = 0,±1,±2, . . . .

Substituting t = kh, k = 0, 1, 2, . . . into the
equation (2), we obtain

e(kh) = ejωkh

−
F (jω0)

∑∞
n=−∞ P (jωn)Hh(jωn)∑∞

n=−∞ F (jωn)P (jωn)Hh(jωn)
ejωkh.

If

F (jω0)
∑∞

n=−∞ P (jωn)Hh(jωn)∑∞
n=−∞ F (jωn)P (jωn)Hh(jωn)

= 1, (3)

then we have e(kh) = 0. For example, we have
e(kh) = 0 if F (s) = 1, that is, we do not use any
anti-aliasing filter, or if the plant is fully band-
limited up to the Nyquist frequency ωN := π/h,
that is,

P (jω) = 0, |ω| ≥ ωN ,

and the frequency of the input signal is ω0 < ωN .
However, in general, the assumption (3) will hold,
and hence, e(kh) will not vanish as k → ∞.

In order to attain the latter objective, we design
the controller K[z] via sampled-data control. Our
design problem is as follows:

Problem 3. Let T be the system from r to ew

in Figure 1. Find the controller K[z] (proper
and linear time-invariant) which stabilizes the
feedback system and minimizes the L2 induced-
norm of T :

‖T ‖ := sup
w∈L2

‖T w‖
‖w‖ .
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Fig. 2. Sampled data system T
This problem is a sampled-data H∞ optimal con-
trol problem. In the next section, we discuss how
we should solve this problem.

3. SAMPLED-DATA H∞ CONTROL FOR
RIPPLE ATTENUATION

Define the state-space realizations of P (s), F (s)
and W (s) as

P (s) :=
[

A B
C 0

]
, F (s) :=

[
AF BF

CF 0

]
,

W (s) :=
[

AW BW

CW 0

]
.

The feedback system in Figure 1 can be arranged
as a generalized form as in Figure 2 with

G(s) =
[

W (s) −W (s)P (s)
F (s) −F (s)P (s)

]
=:

⎡
⎣ Ac B1 B2

C1 0 0
C2 0 0

⎤
⎦

where

Ac =

⎡
⎣ A 0 0
−BF C AF 0
−BW C 0 AW

⎤
⎦ ,

B1 =

⎡
⎣ 0

BF

BW

⎤
⎦ , B2 =

⎡
⎣ B

0
0

⎤
⎦ ,

C1 =
[

0 0 CW

C 0 0

]
, C2 =

[
0 CF 0

]
.

Assume that (Ac, B2) is stabilizable and (C2, Ac)
is detectable. Our objective here is to minimize
the H∞ norm of T (the system from r to ew) in
order to attenuate the intersample ripples.

To solve our sampled-data H∞ problem, we em-
ploy the fast-sampling/fast-hold method (Yamamoto
et al., 1999; Yamamoto et al., 2002). The fast-
sampling/fast-hold technique is a method for ap-
proximating the performance of sampled-data sys-
tems. The procedure is as follows:

• discretize the continuous-time input by a
hold with sampling period h/N ,

Sh/N Hh/NT
ed ew r rd

Fig. 3. Fast-sampling/fast-hold approximation

GdN [z]

Q[z] K[z]

rded

Fig. 4. Discretized system TN

• discretize the continuous-time output by a
sampler with sampling period h/N ,

where N is a positive integer (see Figure 3).
With large N , the discretized signals may be
a good approximation of the continuous signals,
and hence we can control intersample ripples.
Moreover, we have the following theorem.

Theorem 4. For the sampled-data system T in
Figure 2, there exist discrete-time systems {TN :
N = 1, 2, . . . } such that

lim
N→∞

‖T ‖ = ‖TN‖.

The proof is given in (Yamamoto et al., 1999).
The discretized system TN is obtained as follows
(see Figure 4).

TN = Fl(GdN , KQ),

GdN [z] =

⎡
⎣ Ad B1dN Bd

C1dN D11dN D12dN

C2 0 0

⎤
⎦

where

563



GdN [z]
Q[z]

K[z]

rded

Fig. 5. Standard discrete-time system for con-
troller K[z]

Ad := eAch,

Bd :=
∫ h

0

eActB2dt,

B1dN :=
[
AN−1

dN B1N AN−2
dN B1N . . . B1N

]
,

C1dN :=

⎡
⎢⎢⎢⎣

C1

C1AdN

...
C1A

N−1
dN

⎤
⎥⎥⎥⎦ ,

D11dN :=

⎡
⎢⎢⎢⎣

0 0 . . . 0
C1B1N 0 . . . 0

...
...

. . .
...

C1A
N−2
dN B1N C1A

N−3
dN B1N . . . 0

⎤
⎥⎥⎥⎦ ,

D12dN :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
C1B2N

...
N−2∑
i=0

C1A
i
dNB2N

⎤
⎥⎥⎥⎥⎥⎥⎦

,

AdN := eAch/N ,

B1N :=
∫ h/N

0

eActB1dt,

B2N :=
∫ h/N

0

eActB2dt.

In Figure 4, the controller consists of Q[z] and
K[z]. Our problem is therefore a constrained con-
troller design, which is difficult to solve. We have
assumed that K[z] is proper, and hence we shift
Q[z] to the upper block as shown in Figure 5,
and we find K[z] which is proper and linear time-
invariant. As a consequence, we can obtain the
optimal controller via a standard discrete-time
H∞ control.

4. DESIGN EXAMPLES

In this section, we present a numerical example
to illustrate the effectiveness of our method. We
compare our method with a conventional one,
that is, a discrete-time LQR design (Nakano et
al., 1989).
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Fig. 6. Reference signal

Let the plant P (s), the anti-aliasing filter F (s)
and the weight W (s) be as

P (s) =
1

(s + 1)(3s + 1)
,

F (s) =
20

0.01s + 1
,

W (s) =
1

2s + 1
,

respectively. We take the periodic reference signal
r as follows:

r(t) =

⎧⎨
⎩

4t, 0 ≤ t < 1/4,
−4t + 2, 1/4 ≤ t < 3/4,
4t − 4, 3/4 ≤ t < 1

of period T = 1.0 [sec] (see Figure 6). The
sampling period is chosen to be h = 0.05 [sec].
Thus, there are M = 20 sampling instants in
each period of the reference. We employ the fast-
sampling/fast-hold method with the discretizing
rate N = 4.

Figure 7 illustrates transient response of the out-
put y(t) (0 ≤ t ≤ 10) of the system designed
via sampled-data H∞ design and the conventional
one. It is obvious that the proposed design shows
a better transient response compared to the con-
ventional one. Figure 8 shows the steady state
response (20 ≤ t ≤ 22). We can see that the con-
ventional control shows intersample ripples, while
our control attenuates the ripples better. To see
the difference precisely, we depict the steady state
error in Figure 9, which proves that the proposed
method effectively attenuates the intersample rip-
ples, and also shows a better tracking performance
in high-frequency.

5. CONCLUSION

We have proposed a sampled-data H∞ design
for attenuating intersample ripples in sampled-
data repetitive control. We demonstrate the ef-

564



0 1 2 3 4 5 6 7
−10

−5

0

5

10

15

20

25

Time [sec]

A
m

pl
itu

de
Reference and Output Signals

Fig. 7. Transient response: reference (dot), pro-
posed (solid) and conventional (dash)

20 20.5 21 21.5 22

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Steady State Response

Time [sec]

A
m

pl
itu

de

Fig. 8. Steady state response: reference (dot),
proposed (solid) and conventional (dash)
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Fig. 9. Steady state error: proposed (solid) and
conventional (dash)

fectiveness of our method by comparing it with
an existing method.
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