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Abstract: Fractional delay filters are digital filters to delay discrete-time signals by a fraction of
the sampling period. Since the delay is fractional, the intersample behavior of the original analog
signal becomes crucial. In contrast to the conventional designs based on the Shannon sampling
theorem with the band-limiting hypothesis, the present paper proposes a new approach based on
the modern sampled-data H∞ optimization which aims at restoring the intersample behavior
beyond the Nyquist frequency. By using the lifting transform or continuous-time polyphase
decomposition, the design problem is equivalently reduced to a discrete-time H∞ optimization,
which can be effectively solved by numerical computation softwares. Moreover, a closed-form
solution is obtained under an assumption on the original analog signals. Using this closed-form
solution, we introduce a sampling rate conversion with arbitrary conversion rate, and propose
a new pitch shifting method for digital sound synthesis. Design examples are given to illustrate
the advantage of the proposed method.

Keywords: Fractional delay filter, sampled-data control, H∞ optimization, digital signal
processing, sampling rate conversion, pitch shifting.

1. INTRODUCTION

Fractional delay filters are digital filters that are designed
to delay discrete-time signals by a fractional amount of
the sampling period. Such filters have wide applications
in signal processing, including sampling rate conversion
[Ramstad (1984); Smith and Gossett (1984)], nonuniform
sampling [Johansson and Löwenborg (2002); Prendergast
et al. (2004)], wavelet transform [Yu (2007)], digital mod-
eling of musical instruments [Lehtonen and Laakso (2007);
Välimäki et al. (2006)], to name a few. For more applica-
tions, see survey papers [Laakso et al. (1996); Välimäki
and Laakso (2000)].

Conventionally, fractional delay filters are designed based
on the Shannon sampling theorem [Shannon (1949); Unser
(2000)] for strictly-bandlimited analog signals. By this the-
ory, the optimal filter coefficients are obtained by sampling
a delayed sinc function. This ideal filter is however not
realizable because of its non-causality and instability, and
hence many studies have focused their attention on ap-
proximating the ideal filter by, for example, windowed sinc
function [Cain et al. (1995); Selva (2008)], maximally-flat
FIR approximation [Hermanowicz (1992); Pei and Wang
(2001); Samadi et al. (2004); Hachabiboglu et al. (2007);
Shyu and Pei (2008)], all-pass approximation [Jing (1987)],
weighted least-squares [Tarczynski et al. (1997); Shyu and
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Pei (2008)], and minmax (Chebyshev) optimization [Put-
nam and Smith (1997)].

Although these studies are based on the Shannon paradigm,
no real analog signals are fully band-limited, and hence
the assumption is not realistic. It is, therefore, necessary
to design a filter that takes account of high-frequency com-
ponents beyond the Nyquist frequency and the intersample
behavior.

In our recent study [Yamamoto et al. (2012)], we have
proved that sampled-data H∞ control theory provides an
optimal platform to overcome the frequency limitation
enforced by the Shannon sampling theorem. Based on this
study, we formulate the design of fractional delay filters
as a sampled-data H∞ optimization problem. That is,
we design a filter that minimizes the H∞ norm of the
error system between the ideal fractional delay and an ap-
proximated one. In particular, the closed-form formula for
the H∞ optimal fractional delay filter is given under the
assumption that the underlying frequency characteristic of
the continuous-time input signal is governed by a low-pass
filter of first order.

By using the closed-form formula, we propose a new pitch
shifting method for digital sound synthesis [Roads (1996)].
Pitch shifting is a technique for raising or lowering the orig-
inal pitch of audio signals. This is often used in synthesiz-
ing musical tone from a recorded signal of a musical instru-
ment with a fixed fundamental frequency [Roads (1996)].
We show by simulation that the proposed method out-
performs the conventional phase-vocoder method [Portoff
(1976); Ellis (2002)].



0 0 D

0 0 D

(A) Delay

(D) FDF

(C) Sampling (B) Sampling

t t

tt

v(t) v(t − D)

v(nT ) v(nT − D)

Fig. 1. Fractional delay process: (A) a continuous-time
signal v(t) (top left) is delayed by D > 0. (B) the
delayed signal v(t − D) is sampled at t = nT , n =
0, 1, . . .. (C) the signal v(t) is sampled at t = nT ,
n = 0, 1, . . .. (D) digital filtering (fractional delay
filter, FDF) to produce (or estimate) the sequence
{v(nT − D)} from the sampled-data {v(nT )}.

2. DESIGN PROBLEM OF FRACTIONAL DELAY
FILTERS

In this section, we review fractional delay filters with con-
ventional design methods based on the Shannon sampling
theorem. Then, we formulate the design problem as a
sampled-data H∞ optimization problem.

2.1 Fractional delay filters

Consider a continuous-time signal v(t) shown in Fig. 1
(top-left figure). Assume v(t) = 0 for t < 0 (i.e., it is a
causal signal). Delaying this signal by D > 0 gives the
delayed continuous-time signal v(t − D) shown in Fig. 1
(top-right in Fig. 1). Then by sampling v(t − D) with
sampling period T , we obtain the discrete-time signal
{v(nT−D)}n∈Z as shown in Fig. 1 (bottom-right in Fig. 1).

Next, let us consider the directly sampled signal {v(nT )}n∈Z

of the original analog signal v as shown in Fig. 1 (bottom-
left in Fig. 1). The objective of fractional delay filters
is to reconstruct or estimate the delayed sampled sig-
nal {v(nT − D)}n∈Z directly from the sampled data
{v(nT )}n∈Z when D is not an integer multiple of T . We
now define the ideal fractional delay filter.
Definition 1. The ideal fractional delay filter K id with
delay D > 0 is the mapping which produces {v(nT −
D)}n∈Z from {v(nT )}n∈Z, that is,

K id : {v(nT )}n∈Z �→ {v(nT − D)}n∈Z.

Assume for the moment that the original analog signal v is
fully band-limited up to the Nyquist frequency, that is 1 ,

V (jω) = 0, |ω| ≥ ΩNyquist :=
π

T
, (1)

where V is the Fourier transform of v. Then the impulse
response of the ideal fractional delay filter is obtained by
[Laakso et al. (1996)]:

1 The symbol := means that the left-hand side is defined by the
right-hand side.
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Fig. 2. Error system E for designing fractional delay filter
K(z). (A)–(D) correspond to those in Fig. 1.

kid[n] =
sinπ(n − D/T )

π(n − D/T )
= sinc(n − D/T ),

n = 0,±1,±2, . . . , sinc(t) :=
sin(πt)

πt
.

(2)

The frequency response of this ideal filter is given in the
frequency domain as

K id(ejωT ) = e−jωD, ω ≤ ΩNyquist. (3)

Since the impulse response (2) does not vanish at n =
−1,−2, . . . and is not absolutely summable, the ideal
filter is noncausal and unstable, and hence the ideal filter
is not physically realizable. Conventional designs thus
aim at approximating the impulse response (2) or the
frequency response (3) by a causal and stable filter via
a window method, maximally-flat FIR approximations,
weighted least-squares approximation, and so forth, as
mentioned in Section 1.

These methods rely upon the band-limiting assumption
(1). In practice, however, real analog signals always contain
frequency components beyond the Nyquist frequency, and
hence (1) never holds. To overcome this, we formulate the
design problem of fractional delay filters without such an
assumption by introducing the notion of sampled-data H∞
optimization [Yamamoto et al. (2012)].

2.2 Design problem of fractional delay filters

Let us consider the error system shown in Fig. 2.

F (s) is a stable and strictly proper transfer function which
defines the frequency-domain characteristic of the original
analog signal v. More precisely, we assume that the analog
original signal v is in the following subspace of L2:

FL2 :=
{
v ∈ L2 : v = Fw, w ∈ L2

}
.

The upper path of the diagram in Fig. 2 is the ideal process
of the fractional delay filter (the process (A) → (B) in
Fig. 1), that is, the continuous-time signal v is delayed by
the continuous-time delay e−Ds, and then sampled by the
ideal sampler ST with period T > 0 to become an �2 signal
ud := ST e−Dsv, or

ud[n] :=
(ST e−Dsv

)
[n] = v(nT − D), n ∈ Z+.

On the other hand, the lower path represents the real
process ((C) → (D) in Fig. 1), that is, the continuous-
time signal v is directly sampled with the same period T
to produce a discrete-time signal vd ∈ �2 defined by

vd[n] := (ST v) [n] = v(nT ), n ∈ Z+.

This signal is then filtered by K(z) to be designed, and we
obtain an estimation signal ūd = K(z)ST v ∈ �2.
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Fig. 3. Lifted error system Ẽ
Put ed := ud− ūd (the difference between the ideal output
ud and the estimation ūd), and let E denote the error
system from w ∈ L2 to ed ∈ �2 (see Fig. 2). Symbolically,
E is represented by

E =
(ST e−Ds − K(z)ST

)
F (s).

Then our problem is to find a filter K(z) that minimizes
the H∞ norm of the error system E :
Problem 1. Given a stable, strictly proper F (s), a delay
time D > 0, and a sampling period T > 0, find the digital
filter K(z) that minimizes

‖E‖∞ =
∥∥(ST e−Ds − K(z)ST

)
F (s)

∥∥
∞ = sup

w∈L2

w �=0

‖Ew‖�2

‖w‖L2
.

(4)

3. DESIGN OF FRACTIONAL DELAY FILTERS

The error system E in Fig. 2 contains both continuous-
time and discrete-time signals, and hence the system is not
time-invariant; in fact, it is T -periodic [Chen and Francis
(1995)]. In this section, we introduce the continuous-time
lifting technique [Yamamoto (1994); Chen and Francis
(1995)] to derive a norm-preserving system transformation
from E to a time-invariant finite-dimensional discrete-time
system. In this section, we fix the delay D > 0. For variable
delay case, see Section 3.3.

3.1 Lifted model of sampled-data error system

Let {A,B,C} be a minimal realization [Rugh (1996)] of
F (s):

dxF (t)
dt

= AxF (t) + Bw(t), v(t) = CxF (t), t ∈ R+. (5)

We assume A ∈ R
ν×ν , B ∈ R

ν×1, C ∈ R
1×ν , and xF (0) =

0 ∈ R
ν (ν is a positive integer). Let D = mT + d where

m ∈ Z+ and d is a real number such that 0 ≤ d < T . First,
we introduce the lifting operator L [Yamamoto (1994);
Chen and Francis (1995)]:

L : L2[0,∞) 	 f �→ {f̃ [k](θ)}∞k=0 ∈ �2 := �2(Z+, L2[0, T )),

θ ∈ [0, T ), f̃ [k](·) := f(kh + ·) ∈ L2[0, T ).
This operator transforms a continuous-time signal in
L2[0,∞) to an �2 sequence of functions in L2[0, T ). We
apply lifting to the continuous-time signals w and v and
put w̃ := Lw, ṽ := Lv. By this, the error system in Fig. 2,
is transformed into a time-invariant discrete-time system
Ẽ shown in Fig. 3. Since the operator L is an isometry, we
have

‖E‖∞ = ‖Ẽ‖∞ := sup
w̃∈�2

w̃ �=0

‖Ẽw̃‖�2

‖w̃‖�2
. (6)
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Fig. 4. Lifted sampled-data system Ẽ
Then a state-space realization of the lifted error system Ẽ
is given by

x[n + 1] = Adx[n] +
[ B

0

]
w̃[n],

ed[n] = Cex[n] − ūd[n], vd[n] = Cyx[n],
ūd = Kvd,

(7)

where the pertinent operators Ad, B, Ce and Cy are
given as follows: First, B is a linear (infinite-dimensional)
operator defined by

B : L2[0, T ] → R
ν+1,

w̃ �→ Bw̃ =

⎡
⎢⎢⎣

∫ T

0

eA(T−τ)Bw̃(τ)dτ∫ T−d

0

CeA(T−d−τ)Bw̃(τ)dτ

⎤
⎥⎥⎦

The other operators in (7) are all matrices defined by

Ad :=

⎡
⎣ eAT 0 0

CeA(T−d) 0 0
0 Bm Am

⎤
⎦ ∈ R

(ν+m+1)×(ν+m+1),

Ce := [0, 0, Cm] ∈ R
1×(ν+m+1),

Cy := [C, 0, 0] ∈ R
1×(ν+m+1),

where {Am, Bm, Cm} is a realization of the discrete-time
delay z−m.

3.2 Norm-equivalent finite dimensional system

The discrete-time state-space realization (7) involves an
infinite dimensional operator B : L2[0, T ) → R

ν+1 where
ν is the dimension of the state space of F (s) defined
by (5). Introducing the dual operator [Yamamoto (1993)]
B∗ : R

ν+1 → L2[0, T ) of B, and composing this with B, we
can obtain a norm-equivalent finite dimensional system of
the infinite dimensional system (7).

For the state space equations (7) of the lifted system Ẽ ,
put

wd :=
[ B

0

]
w̃

and let E0 denote the system from wd to ed (see Fig. 4).
Note that the system E0 is a finite-dimensional discrete-
time system. Since BB∗ is a positive semi-definite matrix
[Nagahara and Yamamoto (2003)], there exists a matrix
Bd such that BB∗ = BdB�

d . Define a finite-dimensional
discrete-time system by

Ed := E0

[
Bd

0

]
.

See Fig. 5 for the block diagram of Ed. Then the discrete-
time system Ed is equivalent to the sampled-data system
E with respect to their H∞ norm as described in the
following theorem [Nagahara and Yamamoto (2003)]:
Theorem 1. Assume that the sampled-data system E is in
B(L2, �2), the set of all bounded linear operators of L2 into
�2. Then, we have Ed ∈ B(�2, �2) and ‖E‖∞ = ‖Ed‖∞.
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Fig. 5. Discrete-time system Ed

A state space realization of Ed is obtained by replacing B
in (7) with Bd.

Thus the sampled-data H∞ optimization (Problem 1) is
equivalently reduced to discrete-time H∞ optimization to
find the optimal K that minimizes

‖Ed‖∞ = ‖G1 − KG2‖∞,

where

G1(z) := Ce(zI − Ad)−1

[
Bd

0

]
,

G2(z) := Cy(zI − Ad)−1

[
Bd

0

]
.

We can easily find the optimal filter K(z) by standard soft-
wares such as MATLAB Robust Control Toolbox [Balas
et al. (2005)]. Moreover, the design problem is reducible
to an LMI (linear matrix inequality) by assuming that
the filter K(z) is a fixed-order FIR filter [Nagahara and
Yamamoto (2005)].

3.3 Closed-form solution under first-order assumption

The H∞ design method in the previous section requires
the delay D = mT + d to be fixed. In some applications,
a filter with a variable delay (i.e., the delay can be
changed without redesigning the filter). We here give
design methods for the filter K(z) having delay D (or m
and d) as an adaptive parameter.

To design variable fractional delay filters, we first assume
that the filter F (s) is a first-order low-pass filter with cutoff
frequency ω = ωc > 0:

F (s) =
ωc

s + ωc
. (8)

Under this assumption, we have the following theorem.
Theorem 2. Assume that F (s) is given by (8). Then the
optimal filter K(z) is given by

K(z) = a0(d)z−m + a1(d)z−m−1, (9)
where

a0(d) :=
sinh (ωc(T − d))

sinh(ωcT )
, a1(d) := e−ωcT (eωcd − a0).

(10)

The proof is found in [Nagahara and Yamamoto (2003)].
For higher order F (s), one can obtain the H∞ optimal
filters for fixed delay parameters, say, d1 < d2 < · · · < dM ,
via numerical optimization with a linear matrix inequality
(LMI) [Nagahara and Yamamoto (2005)]. Then one can
obtain an approximate filter for arbitrarily d ∈ [dk, dk+1]
by linear combination of the kth and k + 1th filters. See
[Nagahara and Yamamoto (2012)] for more detail.

4. APPLICATION TO PITCH SHIFTING

In this section, we introduce sampling rate conversion
by using the H∞-optimal fractional filter given in the

mT (m + 1)TkrT

v(mT )
v((m + 1)T )

dk

v(t)

t

v(krT )

Fig. 6. The value v(krT ) is given by shifting v(t) by
dk = (m + 1)T − krT and sampling at t = (m + 1)T .

previous section, and propose a new pitch shifting method
by the sampling rate converter.

4.1 Sampling rate conversion by fractional delay filter

Let us consider a continuous-time signal {v(t)}t∈R+ . As-
sume that we are given sampled data v[m] := v(mT ),
m ∈ Z+ where T > 0 is a sampling period. Then we
execute sampling rate conversion on this discrete-time
signal. By r, we denote the conversion rate. We assume
r is a positive real number. Then sampling rate conversion
aims at estimating the values of {v(krT )}k∈Z+ .

For this purpose, we adopt a sampling rate conversion
by using fractional delay filters [Ramstad (1984)]. In
this conversion, we use the sampled-data H∞ optimal
fractional delay filter given in Theorem 2. Let us consider
estimation of the value v(krT ) where k is a positive
integer. Assume that the time krT satisfies mT < krT ≤
(m+1)T where m is a non-negative integer. Let dk := (m+
1)T − krT . Then we have

v(krT ) = v ((m + 1)T − (m + 1)T + krT )
= v ((m + 1)T − dk)
= v(t − dk)|t=(m+1)T .

That is, the value v(krT ) is obtained by delaying v(t) by dk

and sampling at time t = (m+1)T (see Fig. 6). Therefore,
the estimation vr[k] for v(krT ) can be obtained by the
fractional delay filter given in (9) as

vr[k] = a0(dk)v ((m + 1)T ) + a1(dk)v(mT ),
where a0(·) and a1(·) are given in (10). Note that this
filter is a two-tap FIR filter and the estimation needs
much fewer computation than the conventional upsam-
pler/filter/downsampler scheme [Vaidyanathan (1993)].
Also we emphasize that the computation load is the same
for arbitrary real rate r while that of the conventional
scheme depends on r. This is an advantage over con-
ventional methods in the case of real-time processing. In
addition, while conventional design of the digital filter in
sampling rate conversion depends on the band-limiting
assumption mentioned above, our design can take account
of analog characteristic of input signals.

The algorithm of the proposed sampling rate conversion
is shown in Algorithm 1. In this algorithm, we define
v[m] := v(mT ), m = 0, 1, 2, . . ..

4.2 Pitch shifting

Pitch shifting is a technique for raising or lowering the
original pitch of audio signals. To accomplish this, we
can use a sampling rate converter; convert the sampling



Algorithm 1 Sampling rate conversion
vr[0] := v[0]
k := 1
for m = 0, 1, 2, . . . do

while kr ≤ m + 1 do
d := (m + 1)T − krT
vr[k] := a0(d)v[m + 1] + a1(d)v[m]
k := k + 1

end while
end for

(a)

(b)

(c)
Fig. 7. Pitch shifting by sampling rate converter: (a)

original digital signal, (b) sampling rate conversion,
and (c) pitch sifting by processing the signal in (b)
with the same sampling rate as (a).

period T to rT with r > 0, and play the converted signal
with the original sampling period T . By this process, we
have a raised (if r > 1) or lowered (if r < 1) pitch. For
example 2 , the pitch 110 Hz, that is A2 note is converted to
D3 note (110×25/12 ≈ 146.83 Hz) with r = 2−5/12. This is
analogous to listening to music by fast- or slow-forwarding
a cassette tape. This process is effectively done by the
closed-form solution in Theorem 2 if the sound is given
by digital data. We illustrate this process in Fig. 7. For
details on the algorithm for pitch shifting, see [Nagahara
et al. (2011)].

We then show an example of pitch shifting. By using
the proposed fractional delay filter, we shift the pitch
of a guitar sound with A2 (110 Hz) to D3 note (110 ×
25/12 ≈ 146.83 Hz). For this, we take r = 2−5/12.
Fig. 8 shows the frequency responses of the original signal
with fundamental frequency 110 Hz (dots) and the pitch-
shifted signal. The frequency response of the shifted signal
shows that the processed signal has a valid fundamental
frequency 110×25/12 ≈ 146.83 Hz and the harmonics with
110 × 25/12 × n, n = 2, 3, 4.

2 In this article, we consider equal temperament [French (2009)].
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Fig. 8. Frequency response: original signal with fundamen-
tal frequency 110 Hz (dots) and pitch-shifted signal
with fundamental frequency 110 × 25/12 ≈ 146.83 Hz
(solid).

(a) Proposed method

(b) Phase vocoder

Fig. 9. Reconstruction error

We show another example of pitch shifting. We shift the
note A2 (110Hz) used above to A3 (220 Hz). Then the
shifted signal is again shifted down to the original note A2.
We measure the error between the original sound and the
processed one. Figure 9(a) shows the reconstruction error
by the proposed method. For comparison, we processed by
the phase vocoder [Portoff (1976); Ellis (2002)], which is
widely used in pitch shifting. Figure 9(b) shows the error
of the phase vocoder. We can see that the phase vocoder
produces much larger errors than the proposed method.
This shows effectiveness of our method.

One can listen to the processed sounds at the following
web page:

http://www-ics.acs.i.kyoto-u.ac.jp/~nagahara/ps/



5. CONCLUSION

We have presented a new method of designing fractional
delay filters via sampled-data H∞ optimization. An ad-
vantage here is that an optimal analog performance can be
attained. The optimal design problem can be equivalently
transformed to discrete-time H∞ optimization, which is
easily executed by standard numerical optimization tool-
boxes. We have also given the H∞ optimal filter having
delay time variable D as a variable parameter. In par-
ticular, a closed-form solution is given when the frequency
distribution of the input analog signal is modeled as a first-
order low-pass filter. Using this closed-form solution, we
have introduced a sampling rate conversion with arbitrary
conversion rate, and proposed a new pitch shifting method
for digital sound synthesis. Examples have been given to
illustrate the advantage of the proposed method.
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Johansson, H. and Löwenborg, P. (2002). Reconstruction
of nonuniformly sampled bandlimited signals by means
of digital fractional delay filters. IEEE Trans. Signal
Processing, 50(11), 2757 – 2767.
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