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Abstract— In this article, we consider remote-controlled sys-
tems, where the command generator and the controlled object
are connected with a bandwidth-limited communication link.
In the remote-controlled systems, efficient representation of
control commands is one of the crucial issues because of the
bandwidth limitations of the link. We propose a new repre-
sentation method for control commands based on compressed
sensing. In the proposed method, compressed sensing reduces
the number of bits in each control signal by representing it as a
sparse vector. The compressed sensing problem is solved by an
�1-�2 optimization, which can be effectively implemented with
an iterative shrinkage algorithm. A design example also shows
the effectiveness of the proposed method.

I. INTRODUCTION

Compressed sensing has recently been a focus of intensive
researches in the signal processing community. It aims at
reconstructing a signal by assuming that the original signal
is sparse [2]. The core idea used in this area is to introduce
a sparsity index in the optimization. The sparsity index of a
vector v is defined by the amount of nonzero elements in v
and is usually denoted by ‖v‖0, called the “�0 norm.” The
compressed sensing decoding problem is then formulated
by least squares with �0-norm regularization. The associated
optimization problem is however hard to solve, since it is
a combinatorial one. Thus, it is common to introduce a
convex relaxation by replacing the �0 norm with the �1 norm
[3]. Under some assumptions, the solution of this relaxed
optimization is known to be exactly the same as that of the
�0-norm regularization [8], [2]. That is, by minimizing the
�1-regularized least squares, or by �1-�2 optimization, one
can obtain a sparse solution. Moreover, recent studies have
examined fast algorithms for �1-�2 optimization [5], [1], [15].

The purpose of this paper is to investigate the use of
sparsity-inducing techniques for remote control [11], see [10]
for an alternative approach. In remote-controlled systems,
control information is transmitted through bandwidth-limited
channels such as wireless channels [14] or the Internet [9].
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There are two approaches to reduce the number of bits
transmitted on a wireless link, source coding and channel
coding approaches [4]. In the former, information compres-
sion techniques reduce the number of bits to be transmitted.
In the latter, efficient forward error-correcting codes reduce
redundant data (i.e., parity) in channel-coded information.
In this paper, we study the former approach and propose a
sparsity-inducing technique to produce sparse representation
of control commands, which can reduce the number of bits
in transmitted data.

Our optimization to obtain sparse representation of control
commands is formulated as follows: we measure the tracking
error in the output trajectory of a controlled system by
its �2 norm, and add an �1 penalty to achieve sparsity of
transmitted vector. This is an �1-regularized �2-optimization,
or shortly �1-�2-optimization, which is effectively solved
by the iterative shrinkage method mentioned above. The
problem of command generator has been solved when the
penalty is taken solely as an �2 norm, the solution of which
is given by a linear combination of base functions, called
control theoretic splines [13]. In this work, we also present
a simple method for achieving sparse control vectors when
the control commands are assumed to be in a subspace of
these splines. An example illustrates the effectiveness of our
method compared with the �2 optimization.

Notation

For a vector v = [v1, . . . , vn]
� ∈ R

n, the �1 and �2 norms
are respectively defined by ‖v‖1 :=

∑n
i=1 |vi| and ‖v‖2 :=√

v�v. For a real number x ∈ R,

sgn(x) :=

{
1, if x ≥ 0,

−1, if x < 0,
, (x)+ := max{x, 0}.

We denote the determinant of a square matrix M by det(M),
and the maximum eigenvalue of a symmetric matrix M
by λmax(M). Let L2[0, T ] be the set of Lebesgue square
integrable functions on [0, T ]. For f, g ∈ L2[0, T ], the inner
product is defined by

〈f, g〉 :=
∫ T

0

f(t)g(t)dt.

II. COMMAND GENERATION PROBLEM

Let us consider the following linear SISO (Single-Input
Single-Output) plant:

P :

{
ẋ(t) = Ax(t) + bu(t),

y(t) = c�x(t), t ∈ [0,∞), x(0) = 0,
(1)



where A ∈ R
n×n, b ∈ R

n and c ∈ R
n. We assume that

the system P is stable and the state space realization (1)
is reachable and observable. The output reference signal is
given by data points D := {(t1, Y1), (t2, Y1), . . . (tN , YN )},
where ti’s are time instants such that 0 < t1 < t2 < · · · <
tN =: T . Our objective here is to design the control signal
u(t) such that the output trajectory y(t) is close to the data
points Y1,. . . ,YN at t = t1, . . . , tN , that is, y(ti) ≈ Yi, i =
1, . . . , N . To measure the difference between {y(ti)}Ni=1 and
{Yi}Ni=1, we adopt the square-error cost function

E2(u) =

N∑
i=1

(y(ti)− Yi)
2,

where we have made the dependence of y(t i) on u =
{u(t)}t∈[0,T ] through the system equation (1).

In principle, one can achieve perfect tracking, that is,
E2 = 0, by some input signal1. However, the optimal input
for perfect tracking has very large gain especially when
the number N is very large, and may lead to oscillation
between the sampling instants t1, . . . , tN . This phenomenon
is known as overfitting [12]. To avoid this, one can adopt
a regularization or smoothing technique. This method is to
add a regularization term Ω(u) to the cost function E2(u).
We formulate our problem as follows:

Problem 1: Given data D, find a control signal u which
minimizes the regularized cost function J(u) = E2(u) +
µΩ(u), where µ > 0 is the regularization parameter which
specifies the tradeoff between minimization E2(u) and the
smoothness by Ω(u).

A well-known regularization is to use L2 function for
Ω(u), called the control theoretic smoothing spline [13], [6].
We review this in the next section.

III. �2 COMMAND DESIGN BY CONTROL THEORETIC

SMOOTHING SPLINES

For the problem given in section II, the following L 2-
regularized cost function was considered in [13]:

J2(u) := E2(u) + µΩ2(u), Ω2(u) :=

∫ T

0

u(t)2dt. (2)

The optimal control u∗
2 which minimizes J2(u) is given by a

linear combination of the following functions called control
theoretic splines [13], [6]:

gi(t) :=

{
c�eA(ti−t)b, if ti > t,

0, if ti ≤ t,
(3)

see Fig. 1. More precisely, the optimal control for (2) is given
by

u∗
2(t) =

N∑
i=1

θigi(t) = g(t)�θ∗
2, (4)

θ∗
2 := (µI +G)−1yref, (5)

1The explicit form of this input is given by (4) and (5) in Section III,
with µ = 0.

ti

P (t) = c�eAtb

gi(t)

0

Fig. 1. Control theoretic spline gi(t) (solid) and the impulse response
P (t) of the plant P (dots).

(µI +G)−1
yref θ∗

2 u∗
2 y

g(t) P

Fig. 2. Remote-controlled system optimized with J2(u) in (2). The vector
θ∗
2 is transmitted through a communication channel.

where g(t) := [g1(t), . . . , gN(t)]�, yref := [Y1, . . . , YN ]�,
and G is the Grammian matrix of {g1, . . . , gN}, defined by
[G]ij := 〈gi, gj〉, i, j = 1, . . . , N .

IV. �1-�2 COMMAND DESIGN FOR SPARSE REMOTE

CONTROL

In remote-controlled systems, we transmit the control
input u = {u(t)}t∈[0,T ] to the system P through a com-
munication channel. Since {u(t)}t∈[0,T ] is a continuous-time
signal, we should discretize it.

An easy way to communicate information on the input
signal is to transmit the data y ref itself, and produce the input
u(t) by the formulae (4) and (5) at the receiver side. The
vector yref is just an N -dimensional one, and much easier to
transmit than the infinite-dimensional vector {u(t)} t∈[0,T ].

An alternative method consists in transmitting the coeffi-
cient vector θ∗

2 given in (5) instead of the continuous-time
signal u. This procedure is shown in Fig. 2. In this procedure,
we fix the sampling instants t1, . . . , tN and the vector y ref
is given. We first compute the parameter vector θ∗

2 by (5),
and transmit this through a communication channel. The
transmitted vector is received at the receiver, and then the
control signal u∗

2(t) is computed by (4), and applied to the
plant P . We assume that the time instants t1, . . . , tN are
shared at the transmitter and the receiver.

A problem of the above-mentioned strategies is that the
communication channel is band-limited and therefore the
vector to be transmitted has to be first quantized and encoded.
To solve this, we will seek a sparse representation of
the transmitted vector θ in accordance with the notion of
compressed sensing [2], [7].

Define a subspace V of L2[0, T ] by

V :=


u ∈ L2[0, T ] : u =

M∑
j=1

θjφj , θi ∈ R


 , (6)

where φ1, . . . , φM are linearly independent vectors in
L2[0, T ]. Note that if M = N and φi = gi, i = 1, . . . , N
defined in (3), the optimal control u∗

2(t) in (4) belongs to



this subspace2. We assume that the control u is in V , that
is, we find a control u in this subset. Under this assumption,
the squared-error cost function E2(u) is represented by

E2(u) =

N∑
i=1

(y(ti)− Yi)
2 = ‖Φθ − yref‖22 , (7)

where [Φ]ij = 〈gi, φj〉, i = 1, . . . , N , j = 1, . . . ,M . To
induce sparsity in θ, we adopt �1 penalty on θ and introduce
the following mixed �1-�2 cost function:

J1(θ) :=
1

2
‖Φθ − yref‖22 + κ‖θ‖1. (8)

Note that if ‖φj‖1 = 1 for j = 1, . . . ,M , then the cost
function (8) is an upper bound of the following L 1-L2 cost
function:

J1(u) =
1

2
E2(u) + κΩ1(u), Ω1(u) =

∫ T

0

|u(t)|dt.

As mentioned in the introduction, the �1-regularized least-
squares optimization is a good approximation to one regu-
larized by the �0 norm which counts the nonzero elements
in θ. Although the solution which minimizes J1(θ) cannot
be represented analytically as in (4), we can compute an
approximated solution by using a fast numerical algorithm.
The algorithm is described in the next section. By using this
solution, say θ∗

sparse, the optimal control u∗
1 can be obtained

from

u∗
1(t) =

N∑
i=1

θ∗i φi(t) = φ(t)�θ∗
sparse, t ∈ [0, T ].

V. SPARSE REPRESENTATION BY �1-�2 OPTIMIZATION

We here describe a fast algorithm for obtaining the optimal
vector θ∗

sparse. First, we consider a general case of optimiza-
tion. Next, we simplify the design procedure in a special
case.

A. General case

The cost function (8) is convex in θ and hence the
optimal value θ∗

sparse uniquely exists. However, an analytical
expression as in (5) for this optimal vector is unknown except
when the matrix Φ is unitary. To obtain the optimal vector
θ∗

sparse, one can use an iteration method. Recently, a very fast
algorithm for the optimal �1-�2 solution has been proposed,
which is called iterative shrinkage [1], [15].

This algorithm is given by the following: Give an initial
value θ[0] ∈ R

M , and let β[1] = 1, θ′[1] = θ[0]. Fix a
constant c such that c > ‖Φ‖2 := λmax(Φ

�Φ). Execute the

2The functions {g1, . . . , gN} are linearly independent [13].
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Fig. 3. Nonlinear function sgn(θ)(|θ| − κ/c)+
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Fig. 4. Remote-controlled system optimized with J1(θ) in (8). The
vector θ∗sparse minimizing (8) is computed by the FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) given in (9), and transmitted through
a communication channel.

following iteration3:

θ[j] = Sκ/c

(
1

c
Φ�(yref − Φθ′[j]) + θ′[j]

)
,

β[j + 1] =
1 +

√
1 + 4β[j]2

2
,

θ′[j + 1] = θ[j] +
β[j]− 1

β[j + 1]
(θ[j]− θ[j − 1]),

j = 1, 2, . . . ,

(9)

where the function Sκ/c is defined for θ = [θ1, . . . , θM ]�

by

Sκ/c(θ) :=




sgn(θ1)(|θ1| − κ/c)+
...

sgn(θM )(|θM | − κ/c)+


 .

The nonlinear function sgn(θ)(|θ| − κ/c) in Sκ/c is shown
in Fig. 3. If c > ‖Φ‖2, the above algorithm converges to the
optimal solution minimizing the �1-�2 cost function (8) for
any initial value θ[0] ∈ R

M with a worst-case convergence
rate O(1/j2) [5], [1]. The above algorithm is very simple
and fast; it can be effectively implemented in digital devices,
which leads to a real-time computation of a sparse vector
θ∗

sparse.

B. The case Φ = G

We here assume M = N and φi = gi, i = 1, 2, . . . , N ,
that is, Φ = G. Since g1, . . . , gN are linearly independent

3Several methods have been proposed for the iterative shrinkage [15]. The
algorithm given here is called FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) [1].
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Fig. 5. Remote-controlled system optimized with J(η) in (10). The vector
η is transmitted through a communication channel.

vectors in L2[0, T ], the Grammian matrix Φ = G is non-
singular. Let the control input u be

u(t) =
N∑
i=1

θigi(t) = g(t)�θ,

and let η := Φθ. Then, by (7) we have

N∑
i=1

(y(ti)− Yi)
2 = ‖η − yref‖22.

Consider the following �1-�2 cost function:

J(η) = ν‖η‖1 + 1

2
‖η − yref‖22. (10)

The optimal solution η∗
sparse minimizing this cost function is

given analytically by

η∗
sparse = Sν(yref). (11)

Then we transmit this optimal vector η∗
sparse, and at the

receiver we reconstruct the optimal control by u∗
1(t) =

g(t)�Φ−1η∗
sparse. Fig. 5 shows the remote-controlled system

with the optimizer η∗
sparse. In this case, we compute (11) only

one time, while in the general case considered in Section V-A
we should execute the iteration algorithm (9).

VI. EXAMPLE

We here show an example of the sparse command gen-
erator. The state-space matrices of the controlled plant P is
assumed to be

A =

[
0 1
−1 −2

]
, B =

[
0
1

]
, C =

[
1 0

]
.

Note that the transfer function of the plant P is 1/(s+ 1)2.
The sampling instants are given by ti = i × π/6, i =
1, 2, . . . , 12, and the data Y1, . . . , Y12 is given by Yi = sin ti,
that is, we try to track the sine function y(t) = sin t in
one period [0, 2π]. We assume the base functions φi in the
subspace V in (6) are the same as gi’s, that is, we consider
the case Φ = G discussed in Section V-B. We design three
signals to be transmitted: the �2-optimized vector θ∗

2 in
(5), the sparse vector θ∗

sparse given in subsection V-A, and
the sparse vector η∗

sparse in (11). We set the regularization
parameters µ = 0.01, κ = 0.001, and ν = 0.05, see
equations (2), (8) and (10).

The obtained vectors are shown in Table I. We can see
that the vector θ∗

sparse is the sparsest due to the sparsity-
inducing approach. The second sparsest vector is η ∗

sparse
which converts small elements in y ref to 0. The vector θ∗

2 is
not sparse.

Fig. 6 shows the plant outputs obtained by the above
vectors. The transient responses show relatively large errors

tbp

TABLE I

DESIGNED VECTORS

θ∗
2 θ∗

sparse η∗
sparse yref

9.7994 9.6727 0.4500 0.5000
2.7995 4.5626 0.8160 0.8660
1.6544 0 0.9500 1.0000
1.6695 2.9973 0.8160 0.8660
1.0358 0 0.4500 0.5000
0.0059 0 0 0.0000
-1.0231 0 -0.4500 -0.5000
-1.7456 -2.8678 -0.8160 -0.8660
-2.0234 -0.6316 -0.9500 -1.0000
-2.2424 -4.8575 -0.8160 -0.8660
-2.4153 0 -0.4500 -0.5000
5.1813 4.4185 0 -0.0000
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Fig. 6. The original curve (dots) and outputs: by �2-optimal θ∗
2 (dash),

�1-�2-optimal θ∗
sparse (solid), and simple �1-�2-optimal η∗

sparse (dash-dots).
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Fig. 7. The reconstruction errors: by �2-optimal θ∗
2 (dash), �1-�2-optimal
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sparse (solid), and simple �1-�2-optimal η∗

sparse (dash-dots).



tbp

TABLE II

QUANTIZED VECTORS

Q(θ∗
2) Q(θ∗

sparse) Q(η∗
sparse) Q(yref)

9.8 9.7 0.5 0.5
2.8 4.6 0.8 0.9
1.7 0.0 1.0 1.0
1.7 3.0 0.8 0.9
1.0 0.0 0.5 0.5
0.0 0.0 0.0 0.0
-1.0 0.0 -0.5 -0.5
-1.7 -2.9 -0.8 -0.9
-2.0 -0.6 -1.0 -1.0
-2.2 -4.9 -0.8 -0.9
-2.4 0.0 -0.5 -0.5
5.2 4.4 0.0 0.0
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Fig. 8. The reconstruction errors with quantization: by �2-optimal θ̂
∗
2

(dash), �1-�2-optimal θ̂
∗
sparse (solid), and simple �1-�2-optimal η̂∗

sparse (dash-
dots).

because of the phase delay in the plant P (s) = 1/(s+ 1)2.
Despite of sparsity in θ∗

sparse and η∗
sparse, the performances of

the reconstructed signals are comparable to that of the � 2-
optimal reconstruction by θ∗

2. To see the difference between
these performances more precisely, we draw the reconstruc-
tion errors in Fig. 7. We can see that the errors by θ ∗

2 and
θ∗

sparse are almost comparable, and the error by η ∗
sparse is

relatively large.
Then we consider quantization. We use the uniform quan-

tizer with step size 0.1 and simulate the output reconstruc-
tion. Table II shows the quantized vectors. Fig. 8 shows
the reconstruction error under quantization. The errors by
the sparse vectors θ∗

sparse and η∗
sparse still remains small

while the �2-optimal reconstruction shows errors affected by
quantization. This is because the zero-valued elements in the
sparse vectors do not suffer from any quantization distortion.

VII. CONCLUSION

In this paper, we have proposed to use sparse represen-
tation for command generation in remote control by � 1-�2

optimization. An example illustrates the effectiveness of the
proposed method. Future work may include the study of

advantages of sparse representation in view of information
theory.
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