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ABSTRACT
We investigate the use of compressive sampling

for networked feedback control systems. The method
proposed serves to compress the control vectors
which are transmitted through rate-limited chan-
nels without much deterioration of control per-
formance. The control vectors are obtained by
an `1-`2 optimization, which can be solved very
efficiently by FISTA (Fast Iterative Shrinkage-
Thresholding Algorithm). Simulation results
show that the proposed sparsity-promoting con-
trol scheme gives a better control performance than a
conventional energy-limiting L2-optimal control.
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SPARSITY IN CONTROL
• The plant P is located away from the con-

troller K. Remote control robots, aircrafts,
and vehicles are examples.

• We should use a rate-limited network (e.g.,
wireless communication network, or the In-
ternet) for sending the control signal (vector
θ[k]) to the plant P .

• Sparse vectors can be encoded more effec-
tively than dense vectors obtained by usual
energy-limiting optimization as in Linear
Quadratic (LQ) Optimal Control. For exam-
ple, we quantize the non-zero coefficients
in θ[k] and, in addition, send information
about the coefficient locations.

• In many cases, sparse vectors have small `1

norm. This leads to robustness against uncer-
tainty (or perturbation) in the plant model
(c.f. small gain theorem).

CONTROL PROBLEM
The control objectives:

1. Good tracking performance: r(t) ≈ y(t)

2. Sparse control vector: ‖θ[k]‖0 � N

Notation: Let T > 0 be the sampling period of
the control system. For a continuous-time signal
v on [0,∞), we denote by vk, k = 0, 1, . . . , the
restriction of v to [kT, kT + T ), that is,

vk(t) := v(kT + t), t ∈ [0, T ), k = 0, 1, . . .

Assumption: Let M be a given positive inte-
ger and define the signal subspace

VM := span{ψ−M , . . . , ψM}
ψm(t) := 1√

T
exp(jωmt), t ∈ [0, T ),

ωm := 2πm/T.

We assume that rk ∈ VM and uk ∈ VM . That is,
the reference signal r and the control signal u are
band-limited up to the Nyquist frequency ωM =
2πM/T on each time interval [kT, kT + T ).

SOLUTION BY RANDOM SAMPLING AND `1-`2 OPTIMIZATION

Problem Formulation

Given reference signal rk ∈ VM , k = 0, 1, . . . , find
the control uk ∈ VM (or the vector θ[k]) that mini-
mizes

J :=

∫ T

0

|yk(t)− rk(t)|2 dt+ µ‖θ[k]‖0 (∗)

where θ[k] is the Fourier coefficient vector:

uk(t) =

M∑
m=−M

θm[k]ψm(t)

Random Sampling

To obtain the vector θ[k], one has to sample the
continuous-time signal rk. Since rk is assumed to
be band-limited up to ωM = 2πM/T [rad/sec],
one can sample rk at a sampling frequency higher
than 2ωM , by Shannon’s sampling theorem.

However, if M is very large, it may take very
long time to compute the optimal vector. There-
fore, we adopt random sampling as used in com-
pressed sampling.

The cost function J in (*) is then reduced to

J = ‖Φθ[k]−α[k]‖22 + µ‖θ[k]‖0,

where Φ ∈ RK×N (K < N ) and α[k] ∈ RK are
independent of θ[k].

`1-`2 Optimization

The optimization is executed in the feedback loop,
and hence the optimal vector should be computed
as fast as possible, since a delay leads to instability
of the feedback system. Therefore, we relax the
cost function as

J = ‖Φθ[k]−α[k]‖22 + µ‖θ[k]‖1,

and solve this `1-`2 optimization via FISTA.

CONCLUSION

We have studied the use of compressive sam-
pling for feedback control systems with rate-
limited communication channels. Simulation
studies indicate that the method proposed can ef-

fectively compress the signals transmitted. Future
work could include further investigation of bit-
rate issues and the study of closed loop stability.
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SIMULATION RESULTS
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The sparsity of the control vector obtained by the proposed
method is about 8 out of 101 in the steady state.


