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ABSTRACT is a linear filter with 2 inputs and 1 output. The filtéf;

shapes the signal transfer function (STF) from the inptd

. - the outputy to be 1 in the frequency band of interest. On the
lators. First, we analyze the stability 4. modulators. We other hand, the filteF, eliminates the in-band quantization

show a parametric representation of all stabilizing lodprfd . :

. . . . ___noise by shaping the NTF.
for a linearized model, and then an analysis of the nonlinear : ) )
stability is discussed. Next, by using the parameterinatio To shapeoptlmallyt_hg NTF in the fr_equency band O_f in-
loop filters, we propose an optimal design to shape the frd€'€St S0, £, we minimize the maximum of the gain of
quency response of the noise transfer function (NTF). Gerf"® NTF in[0,&}]. This is related to a minimax optimization

eralized KYP (Kalman-Yakubovic-Popov) lemma is used to(Or ‘T’mHO_O one). We have proposed_ ane opt_lmlz_atlon n
reduce our optimization to a linear matrix inequality. [3], in which we have to choose a suitable weighting function

to obtain a good performance. On the other hand, we propose

In this paper, we propose a new design method Bfmodu-

~ Index Terms— AY. modulation, quantizatiort/ > opti-  in this article more useful method with no weighting funatjo
mization, generalized KYP lemma by generalized Kalman-Yakubovic-Popov (KYP) lemma [4].
Then the optimization can be reduced to one with a linear
1. INTRODUCTION matrix inequality (LMI). The idea to apply generalized KYP

lemma toAY modulator design is also proposed in [5], in

AY modulators[1] are widely used in AD (Analog-to- which they assume one-bit quantizer fgrand optimize the
Digital) and DA (Digital-to-Analog) converters, in which average power of the reconstruction error in low frequesicie
high performance can be obtained with coarse quantizers. !N contrast to this approach, our optimization is for quzani

A fundamental issue in designiag® modulators is1oise tion noise sh_apin_g, which is more familiar to engineers and
shapingin the frequency domain [1]. A usual solution to this resea_rchers in this area. Moreov_er we assume more general
is to insert accumulator(s) in the feedback loop to attwuatqg_antlzers and under these quantizers we also analyzeathe st
the gain of the noise transfer function (NTF) in low frequen-bility of A% modulators.
cies. This methodology looks like PID (Proportional-Inizlg
Derivative) control [2], in which the performance of the de-
signed system depends on the amount of experiences of the. FREQUENCY SHAPING IN AX MODULATORS
designer. That is, the conventional design is of an ad hoc na-
ture. In this section, we discuss a role of the linear systEém=

Let us consider a generdl> modulator shown in Fig. [H,, H,] (the loop filter) in theAY modulator shown in Fig.
1. In this modulator@ is a quantizer and! = [H;,Hs] 1. To make the analysis easy, we use the linearized model
shown in Fig. 2. By using this model, the input-output equa-
tion of the modulator in Fig. 2 is given by = Tstru +
Tnte 1, Where

TSTF(Z) = lHlifgzzz), TNTF(Z) = 17;}12(2)

We call Tste(z) and Tytr(2) the signal transfer function
_ (STF) and the noise transfer function (NTF), respectively.
Fig. 1. AX modulator For a conventional first ordekY modulator, the loop filters



ll

Fig. 3. Structure ofAYX modulator with design parameters
R, eSandR; € &

Fig. 2. Linearized model foAY modulator

are given by

Hy(z) = yHa(2) = — : 1)

For example, the conventional modulator in (1) fagz) =
Thenwe havg) = u+ (1 —z"Yn, andTyre(z) = 1—2"tis 1€ SandRy(z) = —z"'€ S
a highpass filter. This is a reason for setting the accumulato By (3), the structure of th& > modulator with the design
1/(z — 1) inthe loop. By this, the quantization noise is mod- parameters?; € S andR, € S’ is shown in Fig. 3. By this
ulated to high frequencies, and if the input signalontains  block diagram, we can interpret the filt&; as a pre-filter to
few high frequency components, we can separate the noiseshape the frequency response of the input signal fanas a
from the output signal by an appropriate lowpass filter. To feedback gain for the quantization noige) — .
sum up, the loop filtef (z) plays a noise-shaping role ikY: Next, we discuss the stability of nonlinead> modulators
modulators. in Fig. 1. We here assume the following.

Before discussing an optimal design of the loop filter, wi

e . . . : .
discuss the stability cAY modulators in the next section. Assumption 1. 1. The linearized model is stable. Thatis,

the filter H(z) = [H1(z), Ha2(z)] satisfies (2).

3. CHARACTERIZATION OF LOOP FILTERS 2. There exist real numbefd > 0 and¢é > 0 such that if
9] < M then|Qy — 1| <.
In this section, we first characterize &l(z)’s which stabilize . : .
the linearized model shown in Fig. 2, and then we consider For example, the uniform quantizer W.'th step stzeand
the stability of the nonlinear system in Fig. 1. A necessar;{‘o'overload input range- M, M (see section 2.1 of [1]) sat-

condition that aA> modulator is stable is that its linearized isfies the second assump_tlon. .

model is internally stable. The converse is generally ng,tr Under these assumptions, we have the following lemma.

that is, even if the linearized model is stable, the nonlinea . emma 2. Assume Assumption 1. W(0) < M and

system in Fig. 1 can be unstable. Il llulloe + l72]lid < M then for allk > 0, we have
We first characterize the filteif (z) which internally sta- |(QU) (k) — (k)| < 6 and|y(k)| < M, wherer; andr, are

bilizes the linearized feedback system. All Stabilizingaﬁis respective|y the impu|se responseﬂifand R, and || . Hl

are characterized as follows [3]. and|| - || are respectively thé! and /> norm of signals.
Lemma 1. The linearized feedback system in Fig. 2 is well-proof. The proof uses the technique discussed in section
posed and internally stable if and only if 4.2.2 of [1]. We omit the proof. m
Hi(2) = Ri(2) Hy(z) = Ry(2) This lemma gives a sufficient condition so that the ampli-
14 Ry(2)’ 1+ Ro(2)’ (2) tude of the input) of the quantizer) is always less than the
Ri(2) €S, Ru(z)ed, saturation levelM/ of Q). This property is said to be of no-

overload, and if this is satisfied&Y>. modulator is said to be
whereS is the set of all stable, causal, real-rational transfer stable [1]. We here consider the stability more preciselg. W
functions, andS’ := {R € S : Ris strictly causa}. introduce a state space model of th& modulator shown in
Fig. 1, and analyze the stability in the state space.
Let state space equations of the system in Fig. 1 be as

Tste(z) = Ri(2), Intr(z) = 1+ Ro(2), follows.

By using these parameteR§ € S andR; € S’, we have

and the input/output equation of the system in Fig. 2 is given (k +1) = Az (k) + Buu(k) + Ban(k),
by P(k) = Cz(k) + Du(k),

y= R+ (1+ Ro)n. 3) n(k) = (Qu — ) (k).



Consider the ideal state;(k), which is the state when Note thatRy(z) is always inS’. We then introduce state-
there is no quantization, that is, whéris identity. Define the space matrice§A, B, C(«a)}, such thatRy(z) = C(a) (2] —

state-space errer:= z — z;. Then, we have the following A)~!B,wherea = [ap a1 ... an],
theorem.
i . 0 1 0 0
Theorem 1. Suppose that thA>: modulator in Fig. 1 satis-
fies Assumption 1. |/(0)| < M and A — . B=|i],
. 0
oo + lr2ll28 < M (4) . " 1

then for allk > 0,
andC(a) = [an,an—-1,...,a1]. Then the inequality (5)

Rt i can be described as linear matrix inequalities (LMI) by gsin
le(k)l < Br = 52 A" Bal- the generalized KYP lemma [4].
=0

Theorem 2. The inequality (5) holds if and only if there ex-

Proof. By using the inequalityAz| < ||A|||z| for a vectorz . . .
and a matrixA, and by Lemma 2, the theorem can be easilyISt symmetric matrice§) > 0 and P> such that the LM (6)

proved. We omit the proof O (printed in the top of the next page) holds.

By Theorem 2, the optimal coefficients, . .. ax can be
obtained efficiently by standard optimization softwareg,,e
MATLAB (See [6]).

By this theorem, when AY. modulator satisfies the con-
dition in Theorem 1, the quantization errefk) in the state
space is bounded h¥,. This bound is finite for alk > 0
and (. := limg_ o Bi is also finite, since the matriA is
Schur-stablé by Assumption 1.1. As a result, the statgk) 5. DESIGN EXAMPLE

is also bounded, and we can conclude that the system is stable ] o
in a weak sense (i.e., bounded but not guaranteed to converethis section, we show examples of designikg modula-

to zero). tors by the proposed method.
Assuming that|r,||; = 1, the condition (4) can be de- We here design the filtefi, (z) which is an FIR filter with

scribed by theH > norm of Ry, that is, | Ry[l« < C where 12 taps, and seR;(z) = 1. The cut-off frequency? is
C > 0is a constant (see [3]). This means that to guarantee™/32- The NTFL+R(z) is designed to have a zeroat 1
the stability one cannot arbitrarily increase the feedgaik {0 attenuate DC noise most, and also to satisfy the stability
|| R2|o. This property is due to the nonlinear nature/of. con_d|t|on|\T,\1T_F|\Oo < 1_.5 (the_se cons_tramts can be des_c_rlbed
modulators. as linear matrix equality and inequality, see [3]). By thigio
mization, we obtain the minimum value ¢f= 6.48 x 10~2
(—23.8 [dB]). Fig. 4 showsIyte's by the proposed method
and the first ordeAY modulator. Thelyte of our design
shows a lower gain in the low frequency and a higher gain in
the high frequency. The frequency response in Fig. 4 is that
of the linearized system shown in Fig. 2. To see the nonlin-
ear effect in the quantizer, we simulate responses against s

usoidal waves with various frequencies. The reconstacti
iiter after theAY modulator is chosen to g optimal one
proposed in [3]. Fig. 5 shows NSR (Noise-to-Signal Ratio)
Problem 1. GivenQ (0 < Q < 7) andy > 0, find Rz(z) €  against sinusoidal waves. The NSR shows that®tirmod-

4. OPTIMAL LOOP FILTER DESIGN VIA
GENERALIZED KYP LEMMA

In this section, we propose an optimal design of the looprfilte
H(z) by using the parameterization in Lemma 1. For sim-
plicity, we assumeR;(z) = 1. This means that the STF is
assumed to be allpass. Then our problem is formulated
follows.

S’ which satisfies ulator shows a better response than the conventional one in
i all frequencies. Fig. 6 and Fig. 7 shows outputs respegtivel
wZ‘[EPQ] [Tnrr(e™)] <7 ®)  of proposed and conventionAlY: converters against a sinu-
' soidal wave.

In implementation, finite impulse response (FIR) filters
are qften preferred, and hence we assumefhéat) is FIR, 6. CONCLUSION
that is, we set
N In this paper, we have propose a new design methaot>f
Ra(z) = Z arz k. ag=0. modulators. We have characterized the all stabilizing fdep
Pt ters for linearized model, and analyzed the stability oflimen
LA matrix A is Schur-stable iffp(A) < 1 wherep(A) is the spectral ~ €arAX moqma_tors- Thenwe have for_mU|ated our problem of
radius of A. noise shaping in the frequency domain. By using generalized
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Fig. 4. Frequency response dfjrr: proposed (solid line) and
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KYP lemma, our design is reducible to an LMI optimization.

Design examples have shown efficiency of our method.
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