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ABSTRACT

Spline interpolation systems generally contain non-causal l-
ters, and hence such systems are dif cult to use for real-time
processing. Our objective is to design a causal system which
approximates spline interpolation. This is formulated as a
problem of designing a stable inverse of a system with un-
stable zeros. For this purpose, we adopt H∞ optimization.
We give a closed form solution to theH∞ optimization in the
case of the cubic spline. For higher order splines, the optimal
lter can be effectively solved by a numerical computation.

We also show that the optimal FIR (Finite Impulse Response)
lter can be designed by an LMI (Linear Matrix Inequality),

which can also be effectively solved numerically. A design
example is presented to illustrate the result.

Index Terms— spline functions, interpolation,H∞ opti-
mization

1. INTRODUCTION

Signal interpolation has many applications; it is used for curve
tting, signal reconstruction, and sampling rate conversion in-

cluding resolution conversion of digital images. Many meth-
ods have been proposed for signal interpolation such as poly-
nomial splines [4, 5] and exponential splines [6]. Polynomial
splines are, in particular, widely used in image processing.

In polynomial (or exponential) spline interpolation, it is
assumed that the original signal is a piece-wise polynomial
(or exponential) function. Then, intersample values are com-
puted via the Fourier coef cients relative to the spline bases.
However, the coef cients are computed by using the future
samples as well as the present and the past ones, and hence
the interpolation system becomes non-causal. The same na-
ture applies to the signal reconstruction by Shannon sampling
theorem [3]. In the case of image processing, non-causality
is not a restriction, and hence spline interpolation is widely
used in that eld. It is however dif cult to use the splines for
real-time processing such as instrumentation or audio/speech
processing.

We therefore propose to design a causal system which ap-
proximates spline interpolation. This is formulated as a prob-
lem of designing a stable inverse of a system with unstable ze-
ros. For this purpose, we adoptH∞ optimization. By this, we
can obtain the H∞-optimal stable inverse, and hence causal

spline interpolation is obtained. Moreover, by assuming that
the lter to be designed is an FIR (Finite Impulse Response)
lter, the optimization is reducible to an LMI (Linear Matrix

Inequality), which can be effectively solved by, for example,
standard MATLAB routines. In this article, we discuss poly-
nomial spline interpolation. Exponential spline interpolation
can be discussed in the same way.

2. SPLINE INTERPOLATION

Consider x ∈ V N , where V N is the space of polynomial
splines of order N , which is de ned as [4],

V N =

{
x(·) =

∞∑
k=−∞

c(k)φ(· − k), c ∈ �2
}
.

In this equation, φ(t) is the symmetrical spline of order N ,
that is,

φ(t) = (β0 ∗ · · · ∗ β0︸ ︷︷ ︸
N+1

)(t), β0(t) =

{
1, 0 ≤ t ≤ 1,
0, otherwise,

where ‘∗’ stands for convolution.
The sampled signal x(n), n = 0, 1, 2, . . . of x(t) ∈ V N

is given by

x(n) =
∞∑

k=−∞
c(k)φ(n− k) = (c ∗ φ)(n). (1)

On the other hand, the fast sampled signal xL(n) := x(n/L),
n = 0, 1, 2, . . . is given by [4]

xL(n) = (cL ∗ φL) (n), (2)

where φL(n) := φ(n/L) and cL(n) := {(↑L)c} (n). By (1)
and (2), the spline interpolation system is composed of two
lters ψ and φL, and the upsampler ↑ L as shown in Fig. 1,

where ψ is a system such that

ψ ∗ φ = I. (3)

This is for the perfect reconstruction without any delay. If we
allow a delay d ≥ 0 for reconstruction, the condition becomes

ψ ∗ φ = z−d. (4)
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ψ ↑L φL
x(k) c(k) cL(k) xL(k)

Fig. 1. Spline interpolation

3. CAUSAL SPLINE INTERPOLATION BY H∞

OPTIMIZATION

3.1. Non-causal interpolation by decomposition

The N th-order spline φ(t) is supported in [0, N + 1), and
hence the sampled signal φ(n) or φL(n) is represented as an
FIR ( nite impulse response) lter. For example, in the case
of N = 3 (cubic spline), we have

φ(z) =
1
6
+
2
3
z−1 +

1
6
z−2. (5)

By (3), the lter ψ(z) is the inverse ψ = φ−1 and given by
ψ(z) = 6z2/(z2 + 4z + 1). One of the poles of ψ(z) lies out
of the unit circle, and hence the lter ψ(z) is unstable. The
same thing is said of the other N th-order splines [5]. A prac-
tical way to implement the lter is to decompose ψ(z) into a
cascade of stable causal and anti-causal lters [5]. In the case
of the cubic spline, we rst shift the impulse response of (5)
as φ(z) = (1/6)z + (2/3) + (1/6)z−1, and then decompose
ψ(z) = φ(z)−1 as

ψ(z) = − 6α
1− α2

(
1

1− αz−1 +
1

1− αz − 1
)
,

where α = −2 + √
3. Since |α| < 1, this is a stable and

non-causal IIR (in nite impulse response) lter.

3.2. Causal interpolation byH∞ optimization

In image processing, causality is not necessary, and the non-
causal lter mentioned above is used widely in that eld. How-
ever, it is dif cult to use such non-causal lters for real-time
processing, for example, in instrumentation or audio/speech
processing. We therefore propose designing a causal lter
ψ(z) which approximates the condition (4) of delayed perfect
reconstruction. Our problem is formulated as follows.

Problem 1 Given a stable transfer function φ(z) and delay
d ≥ 0, nd the causal and stable lter ψ(z) which minimizes

J(ψ) = ‖z−d − ψ(z)φ(z)‖∞
= sup
θ∈[0,2π)

|e−jdθ − ψ(ejθ)φ(ejθ)|. (6)

This is a standard H∞ optimization problem, and it can be
effectively solved by standard MATLAB routines (e.g., robust
control toolbox [1]) by using the design block diagram shown
in Fig. 2.

[
z−d −φ(z)
1 0

]

ψ(z)

Fig. 2. H∞ optimization

3.3. H∞ optimal cubic spline

The cubic spline (N = 3) is widely used because of its simple
structure. We here give the H∞ optimal lter ψ in a closed
form in the case of the cubic spline.

De neE(z) := z−d−ψ(z)φ(z). Substituting (5) into this
equation, we haveE(z) = z−d−ψ(z)(z−α1)(z−α2)/(6z2)
where α1 = −2 − √

3 and α2 = −2 + √
3. This equation

gives ψ(z) = 6z2(z−d − E(z))/{(z − α1)(z − α2)}. Since
|α1| > 1, the lter ψ(z)may have a pole which lies out of the
open unit disc D := {z ∈ C : |z| < 1}. It is easily shown
that the lter ψ(z) is stable (i.e., all poles of ψ(z) lie in D) if
and only if

E(α1) = α−d1 . (7)

Then our problem is to nd a stable E(z) of minimum H∞

norm under the interpolation constraint (7). This is a kind of
Nevanlinna-Pick interpolation problem [9]. By the maximum
modulus principle, we have

‖E‖∞ = sup
|z|=1

|E(z)| = sup
|z|≥1

|E(z)| ≥ |E(α1)| = |α1|−d.

The minimum in nity norm interpolating function is there-
fore the constant function E(z) = α−d1 , ‖E‖∞ = |α1|−d. By
this, we obtain the optimal ψ(z)

ψ(z) =
6z2

(z − α1)(z − α2) (z
−d − α−d1 )

= − 6z2

αd1z
d(z − α2)

d−1∑
k=0

αd−1−k1 zk.

(8)

Remark 1 In the case of higher order splines (i.e., N ≥ 4),
the optimal lter can be obtained by Nevanlinna algorithm
[9]. A closed form solution is however very complicated
when N ≥ 4. In that case, the numerical computation men-
tioned in the previous section is available.

3.4. FIR lter design via LMI

The H∞ optimal lter is generally an IIR one. Since the l-
ter ψ(z) to be designed is linearly dependent upon the error
system E(z) = z−d − ψ(z)φ(z). By this nature, the optimal
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FIR lter with xed order is obtained by optimization with a
linear matrix inequality (LMI).

We here design theH∞ optimal lter ψ(z) as an FIR one

ψ(z) =
N∑
k=0

akz
−k.

A state space representation of this FIR lter is given by

ψ(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0 0

...
. . . 1 0

0 . . . . . . . . . 0 1
aN . . . . . . . . . a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(z)

=:
[

Aψ Bψ
Cψ(α) Dψ(α)

]
(z),

where α :=
[
aN . . . a1 a0

]
, and we use the notation

by Doyle [11]:[
A B
C D

]
(z) := C(zI −A)−1B +D.

Note that the parameter α to be designed is linearly dependent
on the matrices Cψ(α) and Dψ(α). Set state space represen-
tation of φ(z) and z−d respectively by

φ(z) =:
[
Aφ Bφ
Cφ Dφ

]
(z), z−d =:

[
Ad Bd
Cd 0

]
(z).

Then, a state space representation of the error systemE(z) :=
z−d − ψ(z)φ(z) is given by

E(z) =

⎡⎢⎢⎣
Aψ BψCφ 0 −BψDφ
0 Aφ 0 −Bφ
0 0 Ad Bd

Cψ(α) Dψ(α)Cφ Cd −Dψ(α)Dφ

⎤⎥⎥⎦ (z)
=:
[

A B
C(α) D(α)

]
(z).

By this, the parameter α to be designed is linearly dependent
on the matrices C(α) and D(α). By using the bounded real
lemma, we can describe our design problem as an LMI [10].

Proposition 1 Let γ be a positive number. Then the inequal-
ity ‖E(z)‖∞ < γ holds if and only if there exist a positive
de nite matrix P > 0 such that⎡⎣ ATPA− P ATPB C(α)T

BTPA −γI +BTPB D(α)T

C(α) D(α) −γI

⎤⎦ < 0. (9)

Remark 2 Zeros of E(z) can be set by

C(α)(ziI −A)−1B +D(α) = 0, i = 1, 2, . . . , �.

This is a linear matrix equation. The LMI (9) combined with
this linear constraint is also easily solved.

4. SNR PERFORMANCE ANALYSIS

In the previous section, we have proposed the H∞ optimiza-
tion design of the lter φ(z) which approximates the delayed
perfect reconstruction condition (4). In this section, we ana-
lyze the overall performance of the interpolation system shown
in Fig. 1. We here show that the approximation of the equa-
tion (4) is proper for increasing the SNR (signal-to-noise ra-
tio) of the interpolation system.

Proposition 2 Assume that φ(z) and ψ(z) are causal and
stable, and x ∈ �2. Let x̃L be the output of the approximated
interpolation system, that is, x̃L := φL(↑ L)ψx. Then there
exist a real number C > 0 which depends only on φ and L
such that

‖z−dLxL − x̃L‖2
‖x‖2 ≤ C‖z−d − ψ(z)φ(z)‖∞. (10)

Proof. Let ψI be the ideal lter which satis es ψI ∗φ = z−d.
Then, by (1), we have ψIx = z−dc, and

z−dLxL − x̃L = φL(↑L)ψIx− φL(↑L)ψx
= φL(↑L)z−dc− φL(↑L)ψφc
= φL(↑L)(z−d − ψφ)c.

Since {φ(· − k)}∞k=0 is a Riesz basis [2], there exists a real
number K > 0 which depends on φ and is independent of c
and x such that ‖c‖2 ≤ K‖x‖2. Finally, we have

‖z−dLxL − x̃L‖2 ≤ ‖φL(↑L)‖∞‖z−d − ψφ‖∞‖c‖2
≤ ‖φL(↑L)‖∞‖z−d − ψφ‖∞K‖x‖2
= C‖z−d − ψφ‖∞‖x‖2,

where C := K‖φL(↑L)‖∞. �
By this proposition, we conclude that if the H∞ norm

of the error system z−d − φ(z)ψ(z) is adequately small, the
SNR of the interpolator can be increased, and hence H∞ op-
timization provides a good approximation of the ideal (i.e.,
non-causal) spline interpolation.

5. DESIGN EXAMPLE

We here present a design example of causal spline interpola-
tion. We consider the spline of order N = 3 (cubic spline).
We here take the reconstruction delay d = 3 and design the
H∞ optimal IIR lter by (8) and FIR one with 5 taps by the
linear matrix inequality (9). In the case of the cubic spline,
the H∞ optimal IIR lter (8) with d = 3 is given by

ψ(z) =
−6z2 − 6α1z − 6α21
α31z(z − α2)

.

For comparison, we also design 5-tap FIR lter by the con-
strained least square design (CLSD) [7] and the Kaiser win-
dowed approximation (KWA) [8]. Table 1 shows the coef -
cients of the H∞ optimal FIR lter, the lters by CLSD and
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Table 1. Coef cient ak of FIR lter ψ(z)
k H∞ optimal CLSD [7] KWA [8]
0 0.1152359 0.0991561 0.06049527
1 -0.4614954 -0.4599156 -0.37739071
2 1.7307475 1.7215190 1.63379087
3 -0.4614951 -0.4599156 -0.37739071
4 0.1152352 0.0991561 0.06049527
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Fig. 3. Magnitude plot of E(z): H∞ optimal IIR (solid),
H∞ optimal FIR (dash), CLSD [7] (dash-dots), and KWA [8]
(dots).

by KWA. Fig. 3 shows the magnitude of the frequency re-
sponse of E(z) = z−3 − φ(z)ψ(z). By this gure, we can
see that the H∞ optimal IIR lter has an allpass character-
istic. The H∞ optimal FIR lter shows almost the same as
the CLSD lter except for the zero frequency. This is because
CLSD aims at exact inversion for DC signals. At the price of
that, the CLSD lter shows much error in the high frequency.
The KWA lter shows the same nature. Table 2 shows the
H∞ norm of the error system E(z). In general, the purpose
of H∞ design is to minimize the error in the worst case. It
follows that the system optimized by H∞ design is robust
against uncertainty of input signals. This is ef ciency ofH∞

design. On the other hand, CLSD is a design to minimize the
mean value of the error. Which is better depends on its appli-
cation. If we do not have much information of the input,H∞

design (worst case optimization) is more suitable.

6. CONCLUSION

In this article, a design of causal interpolation with polyno-
mial splines has been proposed. The design is formulated as
H∞ optimization. In the case of the cubic spline, the opti-
mal solution is given in a closed form. By using MATLAB,

Table 2. H∞ norm of E(z)
Method ‖E‖∞

H∞ optimal IIR 0.019238
H∞ optimal FIR 0.038597

CLSD [7] 0.053446
KWA [8] 0.16348

higher order optimal lter can be effectively solved. We have
also shown that the H∞ optimal FIR lter can be designed
by an LMI. We have shown a design example to illustrate the
result.
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