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ABSTRACT
Analysis and design of ltered-x adaptive algorithms are con-
ventionally done by assuming that the transfer function in the
secondary path is a discrete-time system. However, in real
systems such as active noise control, the secondary path is a
continuous-time system. Therefore, such a system should be
analysed and designed as a hybrid system including discrete-
and continuous- time systems and AD/DA devices. In this ar-
ticle, we propose a hybrid design taking account of continuous-
time behaviour of the secondary path via lifting (continuous-
time polyphase decomposition) technique in sampled-data con-
trol theory.

Index Terms— Active Noise Control, Adaptive lters,
Least mean square methods, Sampled data systems, Func-
tional analysis

1. INTRODUCTION

With the advance of digital technology, it is common to use
digital systems for signal processing. In particular, active
noise control, which we study here, can adopt an advanced
adaptive algorithm, by using the power of fast DSPs (digital
signal processors) [1].

Fig. 1 shows a standard active noise control system. In
this system, xc(t) represents a noise (or a reference signal)
which enters the duct. The objective here is to eliminate the
noise at the point C. To achieve this, we adopt a digital lter
K(z) with AD (analog-to-digital) and DA (digital-to-analog)
devices. By the discretized signal x of xc(t), the lter K(z)
produces another digital signal y, which is converted to an
analog signal by a DA converter, and then a control sound is
added in the duct by a speaker B to cancel the noise.

In active noise control, it is important to compensate the
distortion by the transfer characteristic of the secondary path
(from B to C). To compensate this, a standard adaptive algo-
rithm uses a ltered signal of the noise x, and is called ltered-
x algorithm [2]. This lter is a model of the secondary path,
and conventionally is a discrete-time one (see e.g., [2, 1]). It
follows that the adaptive lter K(z) optimizes the norm (or
the variance in the stochastic setup) of e(nh), n = 0, 1, 2, . . .

xc(t) A CB

x y e(t)
DAK(z)AD

Fig. 1. Active noise control system

where h is the sampling time of AD and DA device. This
is proper if the secondary path is also a discrete-time sys-
tem. However, in reality, the path is a continuous-time sys-
tem, and the optimization has to be executed taking account
of the behavior of the continuous-time error signal e(t). Such
an optimization may seem to be dif cult because the system
is a hybrid one, which contains continuous- and discrete-time
systems, AD and DA devices.

The same situation has been considered in control sys-
tems theory. The modern sampled-data control theory has
been developed in 90’s, which gives an exact design/analysis
method for hybrid systems containing continuous-time plants
and discrete-time controllers [3]. The key idea is lifting. Lift-
ing is a transformation of continuous-time signals to a discrete-
time signals. The operation can be interpreted as a continuous-
time polyphase decomposition. In multirate signal processing,
the (discrete-time) polyphase decomposition enables the de-
signer to perform all computations at the lowest rate [4]. In
the same way, by lifting, continuous-time signals or systems
can be represented in the discrete-time domain with no errors
(see section 3). The lifting approach is recently applied to
digital signal processing [5, 6].

In line with these comtributions, this article will focus on
a new design of ltered-x adaptive algorithm which takes ac-
count of the continuous-time behavior. As a lter before x,
our adaptive scheme uses an analog (i.e., continuous-time)
model of the secondary path. An analog model can be ob-
tained via, for example, acoustic impedance measurement,
see [7]. The proposed algorithm involves an integral com-
putation on a nite interval. To execute this computation, we
adopt an approximation based on lifting representation. The
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Fig. 2. Block diagram of active noise control system

approximated algorithm can be easily executed by a (linear,
time-invariant, and nite dimensional) digital lter.

Throughout this paper, we use the following notations.
We denote by L2 and L2[0, h) the Lebesgue space consisting
of all square integrable real functions on [0,∞) and [0, h), re-
spectively. By �2 we denote the set of all real-valued square
summable sequences on Z+ := {0, 1, 2, . . .}. In a Hilbert
space X , the inner product is denoted by 〈·, ·〉X , and the norm
by ‖ · ‖X . For a matrix M , we denote its transpose by M �.
By (v)i or (M)ij we denote the i-th or (i, j)-th element of a
vector v or a matrix M .

2. PROBLEM FORMULATION

In this section, we formulate the design problem of active
noise control shown in Fig. 1. Consider the block diagram
shown in Fig. 2. In this diagram, P (s) is the transfer func-
tion of the primary path from A to C in Fig. 1. The transfer
function of the secondary path from B to C is represented by
F (s). Both P (s) and F (s) are continuous-time systems. We
model the AD device by the ideal sampler Sh with a sampling
period h, that is,

(Shxc)[k] := xc(kh), k ∈ Z+.

The DA device is modeled by the zero-order hold Hh with
the same period h,

(Hhy)(t) :=
∞∑

k=0

β0(t− kh)y[k], t ∈ [0,∞),

where β0(t) is the zero-order hold function de ned by

β0(t) :=

{
1, t ∈ [0, h),
0, otherwise.

Under the setup, we consider the following optimization
problem.

Problem 1 Find the optimal FIR ( nite impulse response) l-
ter

K(z) =
N−1∑
k=0

akz−k

which minimizes

J =
∫ ∞

0

|e(t)|2dt. (1)

Instead of the conventional adaptive lter design [8], this prob-
lem deals with the continuous-time behavior of the error sig-
nal e(t). To solve such a hybrid problem, the lifting approach
based on the sampled-data control theory is very effective.

3. LIFTING OPERATOR

In this section, we de ne the lifting operator. Consider a
continuous-time signal f(t) ∈ L2

loc. Then, the lifting oper-
ator L is de ned by

(Lf)[k] := f [k] := {f(kh + θ), 0 ≤ θ < h}, k ∈ Z+,

where h is a sampling period. For each k, f [k] is a function
in L2[0, h), and we denote the value of f [k] at θ ∈ [0, h) by
f [k](θ). The lifted signal f is a series of functions in L2[0, h),

f =
{
f [0], f [1], f [2], . . .

}
. (2)

This is a discrete-time signal whose values are functions.
The lifting operator L can be interpreted as the polyphase

decomposition [4] of continuous-time signals. In multirate
signal processing, several sampling rates are uni ed in the
lowest sampling rate by the polyphase decomposition. In the
same way, by lifting, a continuous-time signal is represented
as a discrete-time one.

The space to which the lifted signal (2) belongs is well
de ned due to the following lemma.

Lemma 1 Let f be in L2. Then,

‖Lf‖2 :=
∞∑

k=0

‖(Lf)[k]‖2L2[0,h) < ∞.

By this lemma, the following �2-like space can be de ned:

�2 :=

{
f :

∞∑
k=0

‖f [k]‖2L2[0,h) < ∞
}

.

The space �2 is a Hilbert space, and the inner product 〈·, ·〉�2
is de ned by

〈u, v〉�2 :=
∞∑

k=0

〈u[k], v[k]〉L2[0,h), u, v ∈ �2.

The lifting operator has a good property shown in the follow-
ing lemma [9].

Lemma 2 For all u, v ∈ L2, 〈u, v〉L2 = 〈Lu,Lv〉�2 . More-
over, the lifting operator L is unitary.

By using this property, we derive in the next section an adap-
tive algorithm taking account of the continuous-time behav-
iors of analog signals.
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4. DESIGN VIA LIFTING METHOD

4.1. Hybrid design of adaptive lters

Since the lifting operator L preserves the inner product, the
objective function (1) can be described in the lifted (i.e., discrete-
time) domain:

J = 〈e, e〉L2 = 〈e, e〉�2 = 〈d, d〉�2 − 2〈w, d〉�2 + 〈w, w〉�2 ,

where ê := Le, d̂ := Ld, and ŵ := Lw. Then, by using
a property that the lifted system FHh := LFHh becomes a
discrete-time, linear, and time-invariant system (see [9]), we
have

〈w, d〉�2 = 〈FHhy, d〉�2 =
N−1∑
k=0

ak〈z−ku, d〉�2 ,

〈w, w〉�2 =
N−1∑
k=0

N−1∑
l=0

akal〈z−ku, z−lu〉�2 ,

where u := FHhx and z is the shift operator in �2 . Next, the
gradient of J with respect to am (m = 0, 1, . . . , N − 1) is
given by

∂J

∂am
= −2〈z−mu, d〉�2 + 2

N−1∑
l=0

al〈z−mu, z−lu〉�2 .

Setting the gradient to zero and solving for am, the parameter
a := [a0, a1, . . . , aN−1]� is optimized by aopt = T−1

uu Tud,
where

(Tuu)ij := 〈z−i+1u, z−j+1u〉�2 ,
(Tud)i := 〈z−i+1u, d〉�2 , i, j = 1, . . . , N

The optimal parameter aopt is given by a product of ma-
trices T−1

uu and Tud. However, each element of the matrices
are calculated by an in nite sum on k = 0, 1, 2, . . . (or an in-
tegral on the whole interval [0,∞)). Such a calculation is not
suitable for practical processing. Moreover, only an estimate
of the secondary path F (s) is available, which are denoted by
F̂ (s). Therefore, we use instantaneous estimates for Tuu and
Tud, and adopt an LMS type of algorithm as follows:

a[n + 1] = a[n] + μT̂ue[n], n ∈ Z+, (3)

where û := F̂Hhx and

(T̂ue[n])i := 〈û[n− i + 1], e[n]〉L2[0,h), i = 1, . . . , N.

Fig. 3 shows the block diagram of this ltered-x adaptive sys-
tem. We should notice that the input x is ltered by a copy
F̂Hh of the secondary path including the hold deviceHh.

Sh K(z) Hh F (s)

F̂ (s)Hh
Adaptive

Algorithm

x(t) x y w(t)
d(t)

−

û

e(t)

Fig. 3. ltered-x adaptive system

4.2. Approximation of adaptive algorithm

To execute the algorithm (3), we have to calculate the L 2[0, h)
inner product 〈û[n−m], e[n]〉L2[0,h), m = 0, . . . , N−1. The
exact value of this is calculated by an integral on [0, h), and
is dif cult to obtain in practice. Therefore, we introduce an
approximation method for this computation.

First, we split the interval [0, h) into L short intervals
[0, h/L), [h/L, 2h/L), . . ., [h − h/L, h). Assume that the
error e is constant on each short interval 1, we have

〈û[n−m], e[n]〉L2[0,h) = ed[n]�ûd[n−m],

where

(ed[n])i := e[n]((i− 1)h/L)� = e(nh + (i− 1)h/L)�,

(ûd[n])i :=
∫ ih/L

(i−1)h/L

û[n−m](θ)dθ, i = 1, . . . , L.

Then the integral in ûd[n] can be computed via a state-space
representation of F̂Hh [9]. Assume that a state-space repre-
sentation of the model F̂ for the secondary path is given by

F̂ :

{
ẋ(t) = Ax(t) + Bv(t),
u(t) = Cx(t), t ∈ [0,∞).

Then, ûd[n] is effectively computed by the following digital
lter,

F̂d

{
ξ[n + 1] = Adξ[n] + Bdx[n],

ûd[n] = Cdξ[n] + Ddx[n],

where Ad, Bd, Cd, and Dd are matrices de ned by

Ad := eAh, Bd :=
∫ h

0

eAτBdτ,

(Cd)i :=
∫ ih/L

(i−1)h/L

CeAθdθ,

(Dd)i :=
∫ ih/L

(i−1)h/L

∫ θ

0

CeA(θ−τ)Bdτdθ, i = 1, . . . , L.

Note that the integrals in Bd, Cd, and Dd can be effectively
computed by using matrix exponential, see [10, 9]. We show
the proposed adaptive scheme in Fig. 4.

1This means that the desired signal d(t) does not contain high frequency
components such that d(t) does not oscillate in each short interval.
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Fig. 4. ltered-x adaptive scheme
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Fig. 5. Freqnecy response of F (s) (solid) and P (s) (dash).
The dotted line shows the Nyquist frequency.

5. SIMULATION

In this section, we simulate our adaptive ltering. Set the
sampling period h = 1. The fast-sampling ratio L is 10. The
transfer functions F (s) and P (s) have peaks at ω = 1, 2, 3, 4
and ω = 1.2, 2.4, 3.6, 4.8, respectively. These frequency re-
sponses are shown in Fig. 5. Note that these systems have
peaks beyond the Nyquist frequency ω = π. Let the input
xc(t) be the white Gaussian signal with zero-mean and vari-
ance 1, and Fig. 6 shows the square error |e(t)|2. We compare
our result with a conventional design (i.e., a discrete-time de-
sign [1]). Our result shows better response than the conven-
tional one, since our method takes account of the continuous-
time characteristic, in particular, high frequency components
beyond the Nyquist frequency.

6. CONCLUSION

In this article, we have proposed a hybrid design of ltered-x
adaptive algorithm via lifting method in sampled-data con-
trol theory. The proposed algorithm can take account of the
continuous-time behavior of the error signal. We have also
proposed an approximation of the algorithm, which can be
easily implemented in DSP. A simulation result shows the ef-
fectiveness of our method.
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Fig. 6. Square error |e(t)|2; proposed design (solid) and
discrete-time design (dotted)
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