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ABSTRACT r P 0 Y
Y
In this paper, we propose a new method for designing over- —
samplingA>: DA converters viaH *° optimization. The de-

sign consists of two steps. One is that 8 modulators.
In AX modulators, the accumulatoy (z —1) is convention-
ally used in a feedback loop to shape quantization noise. In Fig. 1. AY modulator
contrast, we give all stabilizing feedback filters for the mod-
ulator, and propose alH > design to shape the frequency re- : Nt
sponse of the noise transfer function (NTF). The other is a Then, \WE propose a new de_35|gn metho [.)A con-
. . D . . verters. Since DA converters involve both continuous- and
design for interpolation filters in oversampling DA converters. . . . L . .
. . . . : ._discrete-time signals, it is necessary for analysis and design
While conventional designs are executed in the discrete-time - .
. - - Eo take the characteristics of both of them into account. For
domain, we take account of the characteristic of the ongmat : . )
. X L his purpose, theampled-data contrdl] is an optimal tool.
analog signal by using sampled-d&f&° optimization. A de- : .
. ) o .In the last few years, several studies have been made on dig-
sign example is presented to show that our design is superigr = : ;
. ital signal processing via sampled-data control theory [5, 6].
to conventional ones. : ;
Based on these studies, we propose sampled{d&taopti-
mization for designing\X. converters. By sampled-data>
1. INTRODUCTION optimization, we can optimize intersample response of the
_ o _ signals inAX. converters, while only sampled values are opti-
AX modulatorsare widely used in high-resolution AD or DA mized by conventional methods. We present design examples

converters. They are applied to measurement, digital audi@ show that our design is superior to conventional ones.
processing and wireless communications (see [1, 2]). In com-

bination with oversampling techniquéy> AD or DA con-
verters can have high resolution despite a coarse (by usual
one-bit) quantizer. 2.1. Conventional modulators

AY modulators reduce quantization noise by linear filters
in feedback loops, which are designed to shape the frequen&yd. 1 shows the block diagram of a conventiodal mod-
characteristic of the noise transfer function (NTF). The desigilator. In this figure, the difference between the inpand
is commonly done by assuming that the quantization noiséhe outputy is fed back to>, which is conventionally an ac-
is white, and independent of the input signal. Although thecumulatorX:(z) = 1/(z— 1) and outputs a signal. Then the
assumption is not strictly valid, the method leads to a lineapignaly is quantized by a quantiz€?, which is a piecewise
model. We can then adopt linear system theory, in particulagonstant functiol® — Q whereQ is a finite subset aR.
frequency domain approach. Noise shaping in the frequency The quantizer) is a nonlinear system. To make the anal-
domain can be executed by the established optimization, ~ YSiS easy, we introduce a linear model ¢pr Define the quan-
and hence such a linear model will be useful to design  tization errorn, that is,n := Q(3) — . Assuming that the
modulators. Moreover, attenuating the® norm of the NTF  error n is independent of the input, we take the additive

leads the stability of binary (1-bitLée criteriori3, 2]) and  noise model for the quantizer as shown in Fig. 2. By using
multi-bit (see section 2.3) modulators. this model, we see that the input-output equation of the con-
ventional modulator is obtained by

2. AY MODULATORS
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our problem is to approximat& e z) by an FIR filterH (z).
D Since desired NTFs are given by their frequency characteris-
— tics, approximation of{ (z) should be done in the frequency
domain. Therefore, we formulate our problem asf&is op-
timization:

n On the other hand, iHyesz) is given by an IIR filter,
ol
Ay

Problem 1. Given a stable transfer functioHyeq ) (desired
NTF) and a stable weighting functid#' (z), find H € S with
H(o0) = 1 which minimize|(H — Hged W||co-

Sincel/(1 + X)) = 1 — z7" is high-pass, the quantization  thep the optimization is reducible to a linear matrix in-
noise is reduced at low frequencies and increased at high fr%‘quality (LMI) with respect to a matrix variable and the coef-

Fig. 2. Linear model forAY. modulator

quencies. If the input signal contains few high frequency ficientsas, . . ., an [8], and can be effectively solved by stan-
components, we can separate the neis@m the output sig- 43¢ optimization software (e.g., MATLAB).
naly by an appropriate lowpass filter. _ _ Moreover, the zeros off(z) can be assigned by linear
_ Therefore, the accumulatar plays_a n0|se-shaplng role_ equations (linear constraints)@f, .. . , ax. Defineny (z) :=
in AEtmoduIators. In the next section, we generalize this n _ Zi\r:1 arzN"F. Then,H (z) hasM zeros at: = z if
property. and only if
2.2. Quantization noise shaping d*np(2) —0. k=01 M—1
de _ ) ) ) ) )
We here consider the linear model in Fig. 2. L®denote o
glnedfamlly of all stable, causal, real-rational transfer funct|ons(,\,he.re dOZfo(z) — n(2). .The LMI with these linear con-
S straints can be also effectively solved.
S8 :={G € § : G s strictly causg|.
Then we characterize for the linear system in Fig. 2. 2.3. Stability Constraints
Lemma 1. The linearized feedback system Fig. 2 is well-The I_inearized model Fig. 2 is useful for analyz_ir)g the noise
posed and internally stable if and only if shaping properties oY modulators. The stablllty OA.Z .
modulators, however, should be analyzed by considering their
> R Res nonlinear behaviors.
€ 1-R" € To analyze the stability, thé/> norm of H(z) (NTF)

is available. For the stability of binakY modulators, the
Proof. See chapter 5in [7]. O following criterion (Lee criterion) is widely used [3, 2]:

This theorem gives all stabilizing feedback filters. By us- | H oo < 1.5. (2)
ing the parameteR € &', the input/output relation of the

system Fig. 2 is given by Note that this is not a sufficient nor necessary condition for

the stability. For multi-bit modulators with/-step quantizer,
y=Rr+(1—R)n=: Rr + Hn, (1) thefollowing is a sufficient condition for the stability [9, 2]:

whereH = 1 — R is the noise transfer function (NTF) to be 1Rfls < M +2 = r]o, ®)
designed. Note that the conventional first ordet modula- where||h||; is the?! norm of the impulse response f(z).

torhasR(z) =z"' €S _ Letwv denote the order off (z). Then, we have the following
In implementation, finite-impulse response (FIR) filtersyg|ation [10]:
are often preferred, and hence we assutnis an FIR filter 7]l < (20 + 1)||H]|oo.

(soisthe NTFH), that is, . L . .
By combining this with (3), we have another stability condi-

N N tion.
R(z) =) ™" H(z)=1-) aw" 1o <
k=1 k=1 2v+1

From the conditions (2) and (4), attenuation||df|| ., helps
the stability. Therefore, we add the following stability con-
straints to the design of modulators:

(M 42 = [|r[loc)- (4)

Note thatR(z) is always inS’. If a desired NTFHyed2)
is given by an FIR filter,R(z) is obtained byR(z) = 1 —
Hyedz). SinceR(z) must be strictly causal, we have to re-
strict Hges(o0) = 1. |1 H|oo < C,
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Fig. 3. OversamplingAX DA converter
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Fig. 5. Interpolation filters for DA converter: sampled-data
H*° design (solid) and equiripple design (dotted)

Fig. 4. Error system for designing DA converter

whereC' > ( is a constant (e.g., by Lee criterioff,= 1.5).  problem 2. Given a stable, strictly propeF (s), stable, proper
This inequality is also reducible to LMI [8] and easily com- p(s) upsampling factot, delayd, sampling periodr’, find
bined with the LMI optimization mentioned above. K () which minimizes

3. DESIGN OF AY. DA CONVERTERS |€]lsc := sup ”€C”L2.
weEL? |wellze

By using the feedback filtef?(>) characterized in Lemma Problem 2 is reducible to a finite-dimensional discrete-

1, we here design DA converters withY modulators. To time optimization [5], and hence the optimal filt&f(z) can

take account of intersample response, we introduce samplegé obtained by a standard numerical computation software
dataH > optimization. From the input/output relation (1), the (.., MATLAB)

system fromr to y is R(z). In this section, we assume that

R(z) is given.
4. DESIGN EXAMPLE

3.1. Design problem ofAY. DA converters We here present a design example\df DA converters. The

Fi h i DA (diaital | design parameters are as follows: the sampling péfied1,
i9. 3 shows an oversamplinlg®: DA (digital-to-analog) con- o upsampling ratid, = 8, the reconstruction delay =

verter. Assume that the input signalhas sampling tim&§” T/L = 1/8. and the analod filters a®(s) — 1/(T 1)2
and word lengthb [bits]. The digital signak: is first upsam- T/: T/fr :;md gl (5) [(Tes +1)%

pled by aninterpolator[11] K(z)(1 L). By 1 L, L — 1 ze-

ros are introduced between two consecutive input values [11]. 1

The following digital filter K(z), calledinterpolation filter, (s) = (Ts+1)(0.1Ts + 1)’ T =22.05/.
operates on thé — 1 zero-valued samples inserted by, to

yield nonzero values between the original samples. Note that the lowpass filtef'(s) simulates the frequency en-

Then the interpolated signalgoes through @Y. modu-  ergy distribution of a typical orchestral music, which are ob-
lator, and becomes a signalvhose word length is converted served by FFT analysis of analog records of some orchestral
to another one, by usual 1 [bit]. Then the discrete-time signanusic. We design the FIR filteR(z) (of order 7) in AX
y is converted to a continuous signal by the zero-order hol@nodulator by LMI [8], and the interpolation filtek'(z) by
Hr, . with hold time T’/ L, smoothed by a continuous-time the sampled-dat& > optimization. For comparison, we take
filter P(s), and finally becomes an analog sigpal R(z) = z~! and the equiripple filter fok (z) of order 21 as

Our objective here is to design the interpolation filigfz) ~ @ conventional design.
to interpolate samples taking account of the analog perfor- The obtained interpolation filters are shown in Fig. 5. The
mance. If we a priori have the knowledge about the characdain aroundv = 1/7, = 7 of our filter is relatively large be-
teristic F'(s) of the original analog signal (e.g.is a sampled ~cause the filter is designed by considering the lowpass char-
data of an orchestral music), we can use it explicitly for de-acteristic ofP(s).
sign. Then, we simulate the oversampling> DA converter

Therefore, we consider the error system Fig. 4 for designshown in Fig. 3 with a binary quantizer
ing the filter K(z). Let &£ denote the input/output operator
from w, to e.. Then, our design problem is then as follows: Q) = sen(vs) = {1’1 1/:/}Z<06
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(a) Sampled-data/ > design
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(b) Equiripple design

Fig. 6. Time response

Table 1. Comparison of error

Sampled-data desigh Conventional design
leelloo 2.08 x 1071 2.67 x 1071
lleell2 5.68 x 1071 7.21 x 1071
RMS(e.) 6.34 x 1072 8.06 x 1072

We take for the digital input: a sinusoidal waveu[k] =
sin(0.17k),

k = 0,1,2,...,80. The time responses are

Fig. 7. Error: sampled-dat&l *° design (solid) and equiripple
design (dotted)

tages of the present method.
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