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Abstract

Fractional delay filters are those that are designed to delay the input
signals by a fractional amount of the sampling time. Since the delay is
fractional, the intersample behavior of original analog signals be-
come crucial. While the conventional design bases itself on the as-
sumption that the incoming analog signals are fully band-limited up
to the Nyquist frequency, the present paper applies the modern sam-
pled-data H* optimization which aims at restoring the intersample
behavior without the band-limiting assumption. It is shown that
the optimal FIR filter design is reducible to a convex optimization de-
scribed by a linear matrix inequality (LMI). A design example is

shown to illustrate the advantage of the proposed method.

How Do Fractional Delay Filters Work?
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D is not an integer multiple of sampling time T.

Conventional Design

If the input analog signals are fully
band-limited up to the Nyquist fre-
quency, we have the equation:

Sre P = K4St
The solution (the ideal filter) is given by
Kig(e/®T) = e=/oDT (frequency response)
or

sin(7x)

Kigln] = sinc(nT— D), sinc(x) := =

(impulse response)

The ideal filter is non-causal and infinite-dimensional.
Conventional design aims at approximating the ideal filter via
(1) Window method (with impulse response)

(2) Maximally-flat FIR approximation (with frequency response)

(3) Weighted least-squares approximation (with frequency response)

However

Real analog signals are never fully band-limited. They contain some

frequency components beyond the Nyquist frequency.

Nyquist freq.

We Propose

» Design with the frequency characteristic of the input analog signals

which are not fully band-limited up to the Nyquist Frequency.

» Optimization with the H* norm of the error system which both

analog and digital signals.

* Formulated as a sampled-data H” optimization Problem.

Design Problem
Given F(s), D>0, and T>0, find the digital filter K(z) minimizing

The analog filter F(s) governs the frequency-domain characteristic
of the input signal w. F(s) is conventionally assumed to be an ideal
lowpass filter whose cut-off freq. is the Nyquist freq. Here, we do not
assume such full band-limiting.

The error system & has both continuous- and discrete-time signals.
We discretize the continuous-time signals preserving H” norm of the
error system, and find the optimizing filter in the discrete-time domain.

This is a sampled-data H” optimization problem.



Reduction to a Finite Dimensional
Linear Time Invariant System

The error system & is an infinite-dimensional system since
(1) & is an operator from L? to /2,

(2) & contains a time delay.

By using sampled-data control theory, we can obtain a finite-di-

mensional (FD) linear time-invariant (LTI) system whose H* norm is

equal to that of the system &

Theorem 1

For the error system &eB(L?, ¢?), there exists an FD LTI system Eg

such that
I€ .. =1 Edll..

Outline of Proof
(1) Dual operator &* of & such that (&w,v) .= (w, E*v),;:
@ lleli=llgg*|

(3) &£ *€B(/?, /?), and there exists a finite-dimensional discrete-time

system E, €B(/?, /?) such that E4EZ=&& *.

(4) I8 l=l8&* =l E4E4lI=l E4l 8

Discrete-time H” Optimization

E4 is given as a transfer function by
E4(z) = (C1— K(2)Co)(zl — Ag)"'Bg (&)
where Cy, Co, Ag and By are matrices.
Assume K(z) is an FIR filter,
K(z)=ao+a1z7 '+ - +anz7™V
and we can rewrite (@) as
Fo(z) =C(a)(zl— A)'B

where C(a), A, B are matrices. Note that C(a) is linearly dependent

| .

on o = [ao, a1, ..., an], and A and B are independent of .

Our problem is then reduced as follows:

Reduced Problem

Find the FIR parameter o minimizing
| Eqll..= Sup. | C(a)(el = A)7'B]

0€[0, n

Theorem 2

Assumey > 0. Then ||Eqll. <y ifand only if there exists a matrix
P > 0 such that

A'PA-P A'PB C(a)’
B'PA —yl+B'PB O < 0 (B )
C(a) 0 —vl

Outline of Proof

(1) By bounded real lemma (Kalman-Yakubovich-Popov lemma),

| Eqll.. <v is equivalent to that 3 P > 0 such that

T

A B||P 0|lA Bl PO
<
C(a) 0] |0 /__C(oc) 0| |0 yzl_
(2) By Schur complement, this is equivalent to (#6). 0

Design Procedure

(1) Give a delay time D, sampling time 7/, analog filter /(s).

(2) Set FIR order N and compute matrices A, B and C(a).

(3) Find o minimizing vy st. P> 0, v> 0 and the LMl (&§@).

The optimal o In the procedure (3) can be easily obtained by stan-
dard linear optimization softwares (e.g., LMI toolbox in MATLAB).
Moreover, if F(s) is a first order lowpass filter, we can obtain the

optimal filter analytically.

Design Example

(1) Design parameters: D = 10.8 [sec], T =1 [sec] and F(s) is

L
F(s) = (s(-fcmc) , wc=0.5[rad/sec], L =1, 2, 4, 8.

(2) Filter length is 32 taps (i.e., N = 31).

Bode Diagram
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Fig. 2. Frequency response of &: sample-data
H> design (solid) and 32-tap FIR filter by the Kai-
ser window method (dots)

Fig. 1. Fractional delay FIR filters: sample-data
H> design (solid) and 32-tap FIR filter by the Kai-
ser window method (dots)

Sampled-data design Conventional design
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Fig. 3. Time response against a rectangular Fig. 4. Time response against a rectangular
wave: sample-data H™ design wave: 32-tap FIR filter by the Kaiser window
method (dots)

Conclusion

We have presented a new method of designing fractional delay FIR fil-
ters via sampled-data H” optimization. An advantage here is that an
analog optimal performance can be obtained. The design problem
can be reduced to a convex optimization with an LMI, which leads to
an easy computation of design. The designed filter exhibits a much

more satisfactory performance than conventional ones.



