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ABSTRACT

Fractional delay filters are those that are designed to de-
lay the input signals by a fractional amount of the sampling
time. Since the delay is fractional, the intersample behav-
ior of original analog signals become crucial. While the
conventional design bases itself on the assumption that the
incoming analog signals are fully band-limited up to the
Nyquist frequency, the present paper applies the modern
sampled-dataH∞ optimization which aims at restoring the
intersample behavior without the band-limiting assumption.
It is shown that the optimal FIR filter design is reducible to a
convex optimization described by a linear matrix inequality
(LMI). A design example is shown to illustrate the advan-
tage of the proposed method.

1. INTRODUCTION

Fractional delay filters are to delay the input signal by a
fraction of the sampling period. Such a filter has wide ap-
plications in signal processing, including digital communi-
cations, speech processing and digital modeling of musical
instruments [1].

Conventionally, fractional delay filters are designed in
the discrete-time domain by assuming that the incoming
analog signals are fully band-limited up to the Nyquist fre-
quency. However, this assumption is not realistic because
no real analog signals are fully band-limited. Moreover, by
their very nature, such filters should reconstruct intersam-
ple signal values. For such a problem, sampled-data con-
trol theory [2] provides an optimal platform. This theory is
already confirmed to be effective in some digital filter de-
sign problems (e.g., [3]), and it is ideal in dealing with the
continuous-time behavior.

We thus formulate the design problem of fractional de-
lay FIR filters as a sampled-dataH∞ optimization problem.
That is, we design an FIR filter which minimizes theH∞-
norm of the error system including both continuous- and
discrete-time signals. We show that this design problem is

reducible to a convex optimization with a linear matrix in-
equality (LMI). A design example is shown to illustrate the
advantage of the proposed method.

Throughout this paper, we denote byL2 the Lebesgue
space consisting of all square integrable real functions on
[0,∞), and byℓ2 the set of all real-valued square summable
sequences onZ+ := {0, 1, 2, . . .}. For linear spacesX and
Y , we denote byB(X, Y ) the collection of all bounded lin-
ear operators ofX into Y . AT denotes the transpose of a
matrixA.

2. DESIGN PROBLEM

2.1. Fractional delay filters

Consider a continuous-time signalv(t) as shown in Fig. 1
(a). The signalv(t) is delayed by the continuous-time delay

v(t) v(t − D)

v(nT ) v(nT − D)
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Fig. 1. (a) continuous-time signalv(t), (b) delayed signal
v(t − D), (c) sampled signalv(nT ), (d) delayed and sam-
pled signalv(nT − D)

operatore−Ds (D > 0) as shown in Fig. 1 (b). Then the



delayed signalv(t − D) is sampled with periodT and be-
comes a discrete-time signalv(nT −D), n ∈ Z+ as shown
in Fig. 1 (d).

On the other hand, consider the sampled signalv(nT ),
n ∈ Z+ as shown in Fig. 1 (c). Then we define the ideal
fractional delay filter as follows:

Definition 1 The ideal fractional delay filterK id with de-
lay timeD is defined by

K id : v(nT ) 7→ v(nT − D).

Note that ifD = kT , k ∈ Z+, the ideal filterK id is
the discrete-time delayz−k. Moreover, if the input analog
signalv(t) is fully band-limited up to the Nyquist frequency
ωN := π/T , the impulse response of the ideal fractional
delay filter is obtained as follows [1]:

kid[n] =
sinπ(nT − D)/T

π(nT − D)/T
= sinc π(nT − D)/T,

n = 0,±1,±2, . . . .

(1)

The frequency response of this ideal filter is derived by the
Fourier transform:

K id(ejωT ) = e−jωTD, ω ≤ ωN . (2)

The ideal filter (1) or (2) cannot be realized since the
filter is generally non-causal and infinite dimensional, and
hence a conventional design aims at approximating (1) or
(2) via a window method, maximally-flat FIR approxima-
tions, weighted least-squares approximation, and so forth
[1, 4].

These methods are based upon the band-limiting assump-
tion. In practice, however, analog signals always contain
some frequency components beyond the Nyquist frequency
as mentioned above. In what follows, we thus formulate
the design problem of fractional delay filters without this
assumption.

2.2. Design problem of fractional delay filters

Consider the block diagram Fig. 2. In this diagram,F (s)
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Fig. 2. Error system for designing fractional delay filter
K(z)

governs the frequency-domain characteristic1 of the input
signalw ∈ L2. The upper path of the diagram is the ideal
process of the fractional delay filter (the process (a)→ (b)
→ (d) in Fig. 1), that is, the continuous-time signalv is
delayed by the continuous-time delaye−Ds, sampled with
periodT , and becomes a discrete-time signalzd ∈ ℓ2. On
the other hand, the lower path is the real process ((a)→
(c) → (d) in Fig. 1), that is, the continuous-time signalv is
sampled with periodT , filtered byK(z) to be designed, and
becomes a discrete-time signalud ∈ ℓ2.

Puted := zd −ud (the difference between the ideal out-
put zd and the real outputud), and letE denote the system
from w ∈ L2 to ed ∈ ℓ2. Then our problem is to find the
filter KD(z) which minimizes theH∞ norm of the error
systemE .

Problem 1 Given a stable, strictly properF (s), delay time
D > 0, sampling periodT > 0, find the digital filterK(z)
which minimizes

∥E∥∞ := sup
w∈L2

∥ed∥ℓ2

∥w∥L2
. (3)

3. DESIGN OF FRACTIONAL DELAY FIR FILTERS

3.1. Reduction to a finite-dimensional problem

A difficulty in Problem 1 is that the error systemE contains
both continuous- and discrete-time dynamics, that is,E is
an infinite-dimensional system. To solve this problem, we
employ the modern sampled-data control theory [2]. Via
this theory, we have the following theorem.

Theorem 1 For the error systemE ∈ B(L2, ℓ2), there ex-
ists a finite-dimensional discrete-time systemEd such that

∥E∥∞ = ∥Ed∥∞.

Outline of Proof Introduce the dual operator [5]E∗ of E
such that(Ew, v)ℓ2 = (w, E∗v)L2 , w ∈ L2, v ∈ ℓ2. Since
E is bounded, we have∥E∥2

∞ = ∥EE∗∥. Then, the opera-
tor EE∗ is inB(ℓ2, ℓ2), and there exists a finite-dimensional
discrete-time systemEd ∈ B(ℓ2, ℓ2) such thatEdE

∗
d =

EE∗, and finally we have∥E∥2
∞ = ∥EE∗∥ = ∥Ed∥2

∞. For
the precise discussion, see [6]. ¤

This theorem leads to a finite-dimensional optimization
problem. Our objective is then to find an FIR filter minimiz-
ing ∥Ed∥∞.

1Conventionally, F (s) is assumed to be an ideal filter such that
F (jω) = 0, |ω| ≥ ωN .



3.2. Design of fractional delay FIR filter

FIR filters are often preferred to IIR filters because of their
advantages in respect of implementation. In this section, we
will show the design of the optimal FIR filters according to
Theorem 1.

For fixedN ≥ 0, put

K(z) =
N∑

n=0

anz−n,

and introduce a state-space realization

K(z) = CK(α)(zI − AK)−1BK + DK(α), (4)

whereα =
[
a0 a1 . . . aN

]
,

AK =


0 1 0

. ..
. . .
. . . 1

0 0

 , BK =


0
...
0
1

 ,

CK(α) =
[
aN aN−1 . . . a1

]
, DK(α) = a0.

Then the discrete-time systemEd(z) is given as follows [6]:

Ed(z) = (C1 − K(z)C2)(zI − Ad)−1Bd, (5)

whereC1, C2, Ad, Bd are matrices. Substitution of (4) in
(5) yieldsEd(z) = C(α)(zI − A)−1B, where

A =
[

Ad 0
BKC2 AK

]
, B =

[
Bd

0

]
,

C(α) =
[
C1 − DK(α)C2 −CK(α)

]
.

Note that the transfer functionEd(z) is linear inα. It fol-
lows that the design problem of choosingα to minimize
∥Ed∥∞ can be expected to become an LMI. In fact, the
bounded real lemma [7] readily yields the following.

Theorem 2 Assumeγ > 0. Then∥Ed∥∞ < γ if and only
if there exists a matrixP > 0 such thatAT PA − P AT PB C(α)T

BT PA −γI + BT PB 0
C(α) 0 −γI

 < 0. (6)

Proof By the bounded real lemma [7],∥Ed∥∞ < γ is
equivalent to the condition that there exists a matrixP > 0
such that[

A B
C(α) 0

]T [
P 0
0 I

] [
A B

C(α) 0

]
<

[
P 0
0 γ2I

]
.

Then, this inequality is equivalently converted to (6) by us-
ing the Schur complement [7]. ¤

Theorem 2 gives an LMI characterization for the exis-
tence of an FIR filterK(z) such that∥Ed∥∞ < γ. Whether
(6) is satisfied can easily be checked, for example by stan-
dard MATLAB (particularly, LMI toolbox) routines [8]. To
obtain the optimalα, minimize γ subject to the LMI (6),
which can also easily be accomplished by the software.

4. DESIGN EXAMPLE

We present a design example of fractional delay filters. The
design parameters are as follows: the sampling periodT =
1 [sec], the delayD = 10.8 [sec], and

F (s) =
(

ωc

s + ωc

)L

, ωc = 0.5, L = 1, 2, 4, 8.

Note thatF (s) has the cutoff frequency at 0.5 [rad/sec]. The
order of our FIR filterN = 31. If L = 1, we have the
analytic solution [6]

K(z) = z−m(a0 + a1z
−1),

whereD = d + mT , 0 < d < T , m ∈ Z+ and

a0 =
sinhωc(T − d)
√

ωc sinhωcT
, a1 = e−ωcT (eωcd − a0),

which minimizes∥Ed∥∞. Thus, we use this formula when
L = 1 and design by Theorem 2 whenL ≥ 2. We compare
these filters with a conventional filter of 31-st order FIR fil-
ter by the Kaiser window method [1].

Fig. 3 shows the Bode plots of the filters obtained by
the proposed method and the conventional one. The phase
responses are almost similar, whereas there is a difference
in the magnitude. We can see that asL becomes larger,
the frequency response approaches the ideal response (2),
and the conventional filter appears best in the context of the
conventional design methodology.

To see the difference, we show the frequency responses
of the error systemE (see [9]) of the proposed filter (L =
1) and the conventional one in Fig. 4. Our filter exhibits
much smaller errors in the high-frequency domain. This is
because the conventional design does not take into account
the frequency response of the source analog signals while
the present method does.

Then, we show the time response against rectangular
waves in Fig. 5 ( (a) is the proposed design and (b) is the
conventional one). The present method is clearly superior
to the conventional one which shows much ringing at the
edges of the waves.

5. CONCLUSION

We have presented a new method of designing fractional de-
lay FIR filters via sampled-dataH∞ optimization. An ad-
vantage here is that an analog optimal performance can be
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Fig. 3. Fractional delay FIR filters:H∞ design (solid) and
conventional design (dots)
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Fig. 4. Frequency response ofE : H∞ design (solid) and
conventional design (dash)

obtained. The design problem can be reduced to a convex
optimization with an LMI, which leads to an easy compu-
tation of design. The designed filter exhibits a much more
satisfactory performance than conventional ones.
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