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Abstract

This paper presents a practically efficient method
for designing an interpolator that minimizes the L2-
induced norm of the error system between the in-
terpolator and a time-delay. The method is based
on the so-called cutting-plane method for nondifferen-
tiable convex optimization. The advantage of the pro-
posed method is that it can solve design problems of
practical size with a reasonable amount of computa-
tion. Numerical examples show the effectiveness of the
proposed method in comparison with the conventional
ones.

1 Introduction

Multirate signal processing techniques are now popular
in digital signal processing and are used in many digital
devices such as A/D, D/A converters, sample-rate con-
verters and multirate filterbanks [8]. One of the most
fundamental elements in such devices is an interpola-
tor (or a decimator) which consists of an upsampler
(or a downsampler) and a digital filter. It is therefore
important to design a digital filter so that the whole
multirate system achieves a desirable performance.

While the conventional design methods for digital fil-
ters are developed in the discrete-time domain and deal
with continuous-time performance only indirectly, the
recently proposed filter design methods [3, 5, 6, 7, 11,
12] via sampled-data control theory have made it pos-
sible to take analog-domain performance into account.
In [3], it is shown that the design problem of an FIR in-
terpolation filter is reduced to an optimization problem
involving linear matrix inequalities (LMIs). However
this technique is not applicable to design problems with
practical upsampling factors such as M = 32,64! be-
cause the sizes of the corresponding LMIs are too large
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to be numerically solved with today’s advanced com-
puting power. On the other hand, Nagahara and Ya-
mamoto [6] presents that such large-scale design prob-
lems can be solved by decomposing them into some
solvable subproblems. In this case, however, perfor-
mance of the whole system is not guaranteed.

In this paper, we reduce the interpolator design prob-
lem to a convex optimization problem, and solve it us-
ing the cutting-plane method [4], instead of reducing it
to LMIs. The cutting-plane method is an effective op-
timization method for a convex but nondifferentiable
function, and has been shown to be effective in con-
troller design applications [1]. By using the cutting-
plane method, we show that the computational bur-
den for the interpolator design is greatly reduced and
that the problems with practical upsampling factors are
solvable within a reasonable CPU time though they are
intractable by the conventional methods.

2 Problem Formulation

I}

Interpolator

Figure 1: Signal reconstruction error system.

Consider the error system depicted in Figure 1. The
incoming signal w, first goes through an analog filter
F(s) and the filtered signal y. becomes nearly (but not
entirely) band-limited. F(s) governs the frequency-
domain characteristic of the analog signal y.. This
signal is then sampled by Sp, to become a discrete-time
signal y4 with sampling period h. This signal is usually
stored or transmitted with some media (e.g., CD).

To restore y. we usually let it pass through a digital
filter, a hold device and then an analog filter. The
present setup however places yet one more step: The
discrete-time signal y4 is first upsampled by T M,

yalv], k= Mv, v=0,1,...

TM :yq— x4 zalk] = { 0, otherwise



and becomes another discrete-time signal x4 with sam-
pling period h/M. The discrete-time signal z4 is
then processed by a digital filter K(z), becomes a
continuous-time signal u. by going through the 0-order
hold My, ps (that works in sampling period h/M), and
then becomes the final signal by passing through an
analog filter P(s). An advantage here is that one can
use a fast hold device Hy, /s thereby making more pre-
cise signal restoration possible. The delay in the upper
portion of the diagram corresponds to the fact that we
allow a certain amount of time delay for signal recon-
struction.

The system K (z)(T M) is called an interpolator. The
objective here is to design the digital FIR filter K (z) for
given F'(s) and P(s) so that the error of signal restora-
tion is minimized. Let K(z) be an FIR filter, since the
FIR filter is often used in digital devices due to numer-
ical stability and ease of implementation. Also let 7,
denote the input/output operator from w. to e.. Our
design problem is as follows:

Problem 1 Given stable and strictly proper F(s), sta-
ble and proper P(s), an upsampling factor M and a
delay factor m, find an FIR filter K(z) that minimizes
the L?-induced norm of 7oy:

HTeww(:HQ

Tew| =
H ew” chHQ

sup
we€L2[0,00)

3 Interpolator Design

A difficulty in Problem 1 is that it contains the upsam-
pler T M, so that it makes the overall system multirate.
Another difficulty is that it involves a continuous time-
delay, and hence it is an infinite-dimensional problem.

In [3], it is shown that Problem 1 is reduced to an equiv-
alent single-rate finite-dimensional problem. However
the assumption required for deriving the equivalent
discrete-time system is not often satisfied because it
is quite strict in practical signal processing settings
[9]. To avoid this difficulty, the fast sample/fast
hold (FSFH) approximation is known to be effective
[9, 10, 11]. This method approximates continuous-time
inputs and outputs (we, e.) with discrete-time inputs
and outputs (denoted wy and ey, respectively) via a
sampler and hold that operate in the period h/N where
N is an integer.

The FSFH method needs no stringent assumptions
such as the one above, and reduce the infinite-
dimensional problem to a finite-dimensional problem.
However the obtained discrete-time system is of quite
high order, so that it tends to be difficult to solve the
corresponding design problem via LMI approaches be-
cause of computational burden. We here solve the
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problem using the cutting-plane method which is a kind
of convex optimization method. Owing to this method,
such a design problem is shown to be solvable within a
reasonable CPU time.

In this section, we first reduce Problem 1 to a con-
vex optimization problem for an approximate discrete-
time system via the FSFH method, and then apply the
cutting-plane method to it.

3.1 Reduction to a convex optimization prob-
lem

For the sake of simplicity, suppose that we make use of
[ steps of the discrete-time signal y4 with sampling pe-
riod h with an FIR filter K with upsampling factor M.
Then K becomes an MI-tap filter and is represented
by

Ml
K(z,a) := Z 2"
n=1

where o := [y - apn]T € RM is a design parame-

ter.

In order to reduce the multirate problem into a single-
rate problem, we begin by defining the downsampler
1M by

LM :xg v yq, ya = xa[MK], k=0,1,...,

and the discrete-time lifting Lj; and its inverse Lﬁ as

1
z
LM = (l M) : )
SM—1
Ly = [1z7' - 27 (1 M),
As shown in Figure 2, the operator Ly,
stacks together the discrete-time signals
v[0] v[M]
v[1] v[M +1]
o ;
v[M —1] v[2M —1]
| | v
Lifting Ly Inverse lifting Ly,
v[0]  w[l] v[M — 1] v[M] v[M + 1]
| 1 1 | 1 k
Figure 2: Discrete-time lifting.



vk, k& = 0,1,... to vector-valued signals
[W[Mv],v[Mv+1],...,0[Mv+M—-1]", v = 0,1,...
and increases the sampling period by M. Also define
the generalized hold Hy, that works in sampling period
h

Hp o ()M 2 g v+ ue € L2, uo(kh + 0) = H(0)ialk],
0cl0,h), k=0,1,2,...,

(100 --- 0], 6 €[0,h/M)

H(6) — 010 --- 0], 6 € [h/M,2h/M)

{ood'-.-- 1], 0 € [(M —1)h/M, h).

Then it is seen that Hj = 'f'lh/]\4L]T41 [3, 7]. Moreover
define the variable of z-transform for sampling period
h by ¢ := zM and the lifting of the interpolator by
K((, &) := Ly K(z,0)(1 M). Tt follows from these
definitions that

Hym K (z,a)(1 M) = HK(¢, ). (1)

We see from (1) that the multirate system in Figure
1 is equivalently reduced to a single-rate system with
sampling period h. The filter K(¢, ), i.e., the lifting
of the interpolator K (z, a)(T M) can be written as [3]

K(¢ ) = W(@)V(Q), (2)
where
Q1 QM1 QAN(1-1)+1
a2 QNM42 QM (1-1)+2
W(a) = e
ap Qop Qi
T
V(C) = [lacila“'agi(lil)} .

The single-input/M-output filter K (¢, ) is the one to
be designed.

€ <+— le———— Wq

[ (TMGan11 Ganiz }
0

Gana21
Yd iy

K(¢ )

Figure 3: Discrete-time system via the FSFH approxima-
tion.

We next derive an approximate discrete-time system
via the FSFH method. Suppose that the sampling pe-
riod h/M in the interpolator is divided into L subin-
tervals by the FSFH method. As a result, the sampling
period h in the above single-rate system is divided into

N := ML subintervals. For the continuous-time sys-
tem
F(S) *P(S) Ac | Bcl B62
F(s) 0 = Cal| 0 Daz |,
Cal| O 0

the approximate discrete-time system as shown in Fig-
ure 3 is given by the following formulas [11]:

A B B
Gavnn(§) Gania(Q) | _, | ‘Dm D
GdN21 (C) 0 =: N1 N11 N12 )
Cn2 0 0
Ag = eACh, Af ZZ@ACh/N,
h/N
By Byl = [ (Ba Balar
0
BNI = [A]fv_lBlf A;V_zBlf Blf]v
BN2 = [A]fv_lBQf A]fv_2BQf . B2f:| Q:
Ccl
CaAy
CNl = : ’
CaAF™!
CN2 = C(;17
Dy =
r 0 0 0
CclBlf 0 o 0
Ce1AfBiy Ce1 By - 0 7
| CaAY?Biy CaAY By -+ 0
Dyi2 =
r Dc12 0 0
CclBZf Dch o 0
CclAfBzf CCIBQf 0 Q,
| CaAY?Byy CaAY By -+ Des
Q = diag{Q,...,Q} € RN*M
~——
M
Q = [1,...,1]T e RE.

From Figure 3, the approximate discrete-time system
of Toy is
TdN,ew(Cya) = <7mGdN11(C)
+ Gan12(Q)K (¢, @) Ganar ()(3)

For this approximate system,
im (T, ewlloo = || Zewl|
N—oo
is guaranteed [10].

It is seen from (2) and (3) that Tyn,ew(C, o) is affine
in the design parameter a. Therefore, there ex-
ist Hew,i(¢),4 = 0,..., Ml such that Tyn ew((, ) is
rewritten as
Ml
Tan,ew(C ) = Hew,o(C)"aniHew,i(O-
i=1
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Summarizing, Problem 1 is reduced to the following
problem.

Problem 2 Given stable and strictly proper F(s), sta-
ble and proper P(s), an upsampling factor M, a delay
factor m and natural numbers I, L, find a € R that
minimizes

() == || Tan ew(C,

@)l (4)

In the same manner as in [3], Problem 2 can be de-
scribed by LMIs. For practical upsampling factors such
as M = 32,64, however, the approximate discrete-time
systems are of high orders and the corresponding Ric-
cati solutions are of large size. The resulting LMIs are
too large to be solved with today’s advanced PCs. On
the other hand, ¢ is convex with respect to «, and
therefore Problem 2 is a convex optimization problem.
Also, the variable in Problem 2 is only a whose size is
irrelevant to N and m. It is thus more effective to solve
Problem 2 directly by a convex optimization method.

3.2 Solution via the cutting-plane method

The function ¢ (4) is convex but not in general differ-
entiable [1]. Because of this, we cannot apply gradient-
based optimization methods to Problem 2. However,
when a subgradient of ¢ can be obtained, we can ap-
ply the cutting-plane method [4] to this problem. The
subgradient is defined as follows.

Definition 1 Suppose that f : " — R is convex and
xo € ™. Then we say that g € R™ is a subgradient of
f at xg if

f(x) > flxo) + g% (x — o) for all x € R™.

When f is nondifferentiable at x(, the subgradient is
not uniquely determined. To use the cutting-plane
method, however, we have only to compute one sub-
gradient at every point. The following lemma gives a
subgradient of ¢ at ag [1].

Lemma 1 Let wy be a frequency at which ¢(ev) (i.e.,
ITan ew(C, 0)||loo) is achieved. Also, for the singular
value decomposition

Tun ew (€7, ag) = USV*,

let ug and vy be the first columns of U and V', respec-
tively. Then a subgradient of ¢ at o is given by

Re(ua Hew.,l (ejwo )UO)
¢ () = : 5)

Re(u(”;Hew,Ml(ej“’o)vo)
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,ao0.mi]T. Then the

§R1\/Il

Proof: Let ap = [ap,1, 0,2, - --
following relation holds for all « €

$(axo) + (¢Sg(ao))T(a — )
U[)TdN ew( wo aO)
(

T
(ugHew,l

e]wo )'UO)

+ (a — ap)

(ejwo)vo>

— i )l Hew i (€740 )’Uo)

Re(uSch,Ml(ejw“)vo)
Ml

.
Jvo + g o, ugHew,i
i=1

Re (u}kJ Hewo(e?*°

Ml

+ Re (Z(ai

Mi

Re (uSHew_,o(ejwo)vo + Z aiuSHewﬂ,;(ej“”)v())

i=1
Re (uéTdN’ew(ej“’”7 oz)vo)

Re(u*TdN’ew(ej“’

< sup

lull=llv]|=1,weR
¢(a).

Hence (5) gives a subgradient of f at a.

;Q)v)

We apply the following cutting-plane algorithm [1, 4]
to Problem 2.

Cutting-plane algorithm

Step 0. Determine search regions {a|amin < a <
Amax}y {L | Linin < L < Lpax}, select a; and
set e.

Step 1. Set k = 1, and repeat Steps 2 — 5 until the
following stopping criterion is satisfied:

(Uk —Lk)/Uk <e

Step 2. Compute ¢(ay) and ¢*8 (o).

Step 3. Solve the following linear program to find a
lower bound Ly of the optimal value ¢°P* and an
optimal solution ar?*

Ly = min{cT§ | AL <, fnin €L gmax}7
where
(¢ ()" —1
. . (04
A= : : ; 52 [ L :| )
(¢ ()" —1
(98 (cn))" o1 — ¢(cur)
. 0
[
(9% (o)) e — pauk)
Qmin Qmax
gmin - |: Lmin :| ) gmax - [ Lmax :| .



Step 4. Compute an upper bound of the optimal value
¢opt

U = mi i ).
k 1I<nz‘1£k d)(az)

Step 5. Set a1 = o™ and replace k by k + 1.

Remark 1 In Step 2, the H*® norm ¢(ay) and the
frequency achieving it need to be computed. These
values can be efficiently computed by the method based
on [2] which is implemented as the command dnorminf
in MATLAB.

4 Numerical Examples

We present design examples for
1 _2.205

(Ts+1)(10Ts+ 1)’ ’ T
1

h=1,m=21=2 L =2. The low-pass filter F(s)
has cutoff frequencies of 7/22.05rad/sec = 1/44.1Hz
and 7/2.205rad/sec = 1/4.41 Hz. For the sampling fre-
quency 44.1 KHz of audio CDs, these cutoff frequencies
of this filter correspond to 1/44.1 x 44.1 KHz = 1 KHz
and 1/4.41 x 44.1KHz 10KHz. This frequency-
domain characteristic simulates that of a typical or-
chestral music. All computation has been done with
MATLAB on a PC with Intel Pentium III 500 MHz
CPU.

Example 1

To compare the computational efficiency of the pro-
posed method and the conventional LMI approach [3]2,
we design interpolators for various upsampling factors
M by these methods. Set e = 0.05, a1 = [1,...,1],
and a search region {«a € ML 10 < o < 10,0 =
1,...,Ml}. Figure 4 shows CPU times for solving the
design problems. For M = 32, the conventional LMI
approach does not terminate within 10 hours. Table
1 shows the sizes and the numbers of variables of the
LMIs corresponding to various values of M. It is seen
from Figure 4 that the problems for M = 32,64 can be
solved within reasonable CPU times.

Example 2

For upsampling factor M = 32, we next compare
performance of the interpolator designed by the pro-
posed method with that of two conventional interpo-
lators; (i) one is an interpolator designed by decom-
posing the design problem for M = 32 into two prob-
lems for M = 2,16 and concatenating them [6] (the
upsampling factor of this interpolator corresponds to
M =2 x 16 = 32); (ii) the other is an equiripple filter

2The FSFH method is used here, while it is not used in [3].
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Figure 4: Upsampling factors and CPU times.

of order 500. Figures 5, 6 and 7 show the time re-
sponses against a rectangular wave. The interpolator
designed via decomposition with M = 2,16 appears to
be quite good but has a slightly slow rising and falling
response in comparison with the interpolator designed
by the proposed method. The equiripple filter show a
large amount of ringing, whereas the one designed by
the proposed method has much less peak around the
edge.
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Figure 5: Time response against a rectangular wave
(sampled-data design with M = 32).

5 Conclusions

We have presented a sampled-data H*° design method
of interpolators by using the cutting-plane method. By
the proposed method, it has been shown that the design
problems with practical upsampling factors M = 32,64
can be solved within reasonable CPU times. While



Table 1: Upsampling factors M and LMIs.

M I 4 [ 8 [ 1w | 32 [ 64 |
Size 42 x 42 | T4 x 74 | 138 x 138 | 266 x 266 | 522 x 522
Number of variables 100 248 736 2480 9040

15

10 20 30 40 60 70 80 920 100

50
time[sec]

Figure 6: Time response against a rectangular
(sampled-data design with M = 2, 16).

wave

this paper deals with only the H* specification, the
proposed method can deal with other specifications in-
troduced in [1] (e.g., the H? specification). Also, we
can immediately extend the proposed method to design
problems of decimators and sample-rate converters [6].
In this way, the proposed method is effective for practi-
cal sampled-data design in multirate signal processing.
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