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Abstract

Despite the existence of methods for a direct optimal de-
sign of sampled-data control systems, it is often desired to
approximate sampled-data systems with discrete-time ones.
This occurs frequently in the context of digital redesign,
in which one retains intuition in the continuous-time con-
text. This paper investigates and gives conditions under
which such a method works. Under some conditions, we
guarantee that fast-sampling approximation works well for
H∞ sampled-data design, and give an estimate for such an
upsampling factor. As an application, we propose a new
method for obtaining an FIR controller (possibly with first-
order approximation). A comparison is made with an exist-
ing method.

1 Introduction

Modern sampled-data control theory enables us to design
directly a digital controller that makes an analog perfor-
mance optimal. It is also known that for finite-dimensional
plants this design problem, for example, H∞ control prob-
lem having the mixed nature of both discrete-time and
continuous-time, can be reduced to an equivalent discrete-
time, finite-dimensional problem [3, 6, 7].

In spite of these results, however, there are still several rea-
sons that lead us to approximate the design problem in a
variety of ways by a more conventional approximate de-
sign problem, and then obtain a digital controller. One rea-
son is that we may be able to use a design software of our
choice, and base our design intuition on such softwares we
are familiar with. Once we have obtained an approximant,
it is not difficult to invoke such a more conventional de-
sign package. Yet another advantage is that we may wish to
rely on some design intuition we have developed, and this
is in many cases easier to maintain by resorting to approx-
imations, rather than using the direct optimization methods
mentioned above. So-called digital redesign is regarded as
such a case: we first obtain a continuous-time controller,
and then attempt to discretize it, while attempting to main-
tain the desirable continuous-time performance.

In such attempts, we of course wish to capture the
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continuous-time performance, rather than the mere sample-
point behavior. This requires approximation of the gen-
eralized plant in the sampled-data setting, and desirably
a convergence analysis. Keller and Anderson [1, 8] have
proposed to use a fast-sampling/fast-hold approximation
with its approximating performance taken to be the closed-
loop behavior. Related design problems have been studied
by Madievski and Anderson [10] for H∞ control and by
Bamieh et al. [4] for L1 control problems. Later it was
proven by Yamamoto et al. [14] that such fast-sampling ap-
proximations converge uniformly in the frequency domain
to the limiting sampled-data system. The following impor-
tant issues still remain open, however:

1. How do we guarantee that a designed controller K
(based on plant approximation/discretization) con-
verges to the “right” controller in the limit? Since
we do not know in advance which controller will be
part of the closed-loop before the design, a conver-
gence theorem with a fixed K would not be enough.
We need some kind of uniformity in the controllersK
in the convergence process to guarantee this. (While
Bamieh et al. [4] successfully gave an explicit conver-
gence bound for the L1 control design problem, there
is an important difference here. Although sampling is
continuous with respect to the L∞ norm where it is
well defined, it is not continuous with respect to the
L2 norm. This makes the estimate of the convergence
rate here in the H∞ context more delicate, and quite
different from that studied in [4].)

2. How fast should fast-sampling periods be? While
there exist some empirical studies on estimates and
indications in some special cases, there does not ex-
ist a precise estimate that guarantees quality of ap-
proximation for a particular rate, to the best of the
authors’ knowledge (again, except [4] for the L1

control problem, but not for the frequency response
computation/H∞ design).

This paper studies these problems. We first invoke the so-
called FR-operator T by Araki and others [2]. Its principal
submatrix T (M,M) of size M tells us how many aliased
components we need to obtain a desired degree of preci-
sion. We then obtain an estimate on the fast-sampling rate
using T (M,M), based on the approximation estimate of
sinusoids via piecewise step functions arising from sample
and hold actions.

We also apply the results to the digital redesign problem,
and show that the FIR (finite-impulse response, i.e., those



having finitely many Markov parameters) approximation
problem of a stable controller for sampled-data systems can
be reduced (with first-order approximation when the orig-
inal problem is not one-block) to an LMI. In the field of
digital filters, there is always a strong need for replacing an
IIR (infinite-impulse response) filter by an FIR filter. The
latter has the advantages that it is intrinsically stable and
free from various problems such as limit cycles arising from
finite-wordlength precision. We show that the obtained LMI
can be solved via a convex optimization method such as the
cutting plane method. We illustrate the result by comparing
it with the example studied in [10].

2 Uniform Approximation via Fast-Sampling

Consider the sampled-data control system in Fig. 1, con-
sisting of a continuous-time generalized plant P =[
P11 P12

P21 P22

]
and a discrete-time controller K with sam-

pler Sh and zero-order hold Hh with sampling period h.
The closed-loop transfer operator from w to z will be de-
noted by Tzw(K)(z).

P (s)

K(z)
Sh Hh

w

uy

z

Figure 1: Sampled-data control system

We assume that P21 is strictly proper, which is necessary to
assure that sampling is well-defined. Likewise, we assume
that P11 and P12 are also strictly proper.

It is well known that for a finite-dimensional plant P , the
sampled-data H∞ controller design problem of Fig. 1 can
be reduced to a norm-equivalent discrete-time H∞ design
problem [3, 6, 7]. Nonetheless, discretization via fast-
sampling and fast-hold as studied in [10, 14] is often ef-
fective as explained in the introduction.

Let us thus consider fast-sampling approximants for the
design problem (The N -step closed-loop transfer operator
from w to z will be denoted by T N

zw(K)(z).) Fig. 2; for de-
tailed formulae, see, e.g., [14]. The idea is to approximate
the inputs by step functions of step size h/N for sufficiently
large N and also approximate outputs by taking their sam-
ples at every h/N seconds rather than the original sampling
period h. It may appear trivial that such an approximation
gives the right answer, for example, in computing the fre-
quency response. The situation is however much more deli-
cate because we do not know in advance what kind of input
gives rise to the gain of the frequency response which is ac-
tually the operator norm at each frequency. It is proven in
[14] that the frequency response gain of such approximants
converges to that of the limit uniformly for 0 ≤ ω ≤ 2π/h,
for a fixed controller K .

While this is sufficient for analysis purposes, we still need to
go one step further. In synthesis, we do not know in advance
which controller will appear in the closed-loop. The con-
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Figure 2: Fast sampling approximation

vergence result of [14] requires that the controller be fixed,
and this assumption is (in effect) not satisfied for synthesis
problems. To this end, we must guarantee the uniform con-
vergence, with respect to controller K , of the norms of the
fast-sampling approximants if we are going to use such ap-
proximants in designing the controller. This motivates the
following theorem.

Theorem 2.1 Let S be a set of stable controllers K such
that i) every K ∈ S is stabilizing, and ii) S is compact with
respect to the H∞-norm. Then the frequency response gain
‖T n

zw(K)(ejωh)‖ of the n-step fast-sampling approximant
T n

zw(K) converges to ‖Tzw(K)(ejωh)‖ uniformly in K ∈
S. This convergence is also uniform in ω ∈ [0, 2π/h).

Proof Fix ε > 0, and take any K ∈ S. By the conver-
gence result of [14], there exists N such that∣∣∣‖T n

zw(K)(ejωh)‖ − ‖Tzw(K)(ejωh)‖
∣∣∣ < ε for all n ≥ N,

and this is uniform in ω. We will thus omit the dependence
on ω below. Take the least such N and name it N(K, ε).
Since ‖T n

zw(K)‖−‖Tzw(K)‖ is continuous with respect to
K as Lemma 2.3 below shows, there exists a neighborhood
B(K, δ) := {K ′ : ‖K ′ −K‖ < δ} of K such that

∣∣∣‖T n
zw(K ′)‖ − ‖Tzw(K ′)‖

∣∣∣ < ε

for all n ≥ N(K, ε) and K ′ ∈ B(K, δ). This yields a
covering of the controller set:

S = ∪K∈SB(K, δ).

By the compactness of S, there exists a subcovering

S = B(K1, δ1) ∪ · · · ∪B(Km, δm).

Taking Nmax := {N (K1, ε), . . . , N(Km, ε)}, we readily
have that n ≥ Nmax implies∣∣∣‖T n

zw(K)‖ − ‖Tzw(K)‖
∣∣∣ < ε (1)

for all K ∈ S. �
Remark 2.2 A typical example of S may be given by the
set of FIR controllers of order less than or equal to a prefixed
integer q and with a prespecified norm bound as

S := {K : ordK ≤ q, ‖K‖ ≤M,K is stabilizing}.

Since the number of coefficients of K is at most q + 1, this
can be regarded as a subset of R

q+1. The norm ‖K‖ may



be interpreted in the sense of any norm in R
q+1. More gen-

erally, one can also consider IIR controllers, having both
numerator and denominator, with fixed order. To avoid un-
stable pole-zero cancellations, we may have to exclude a
small open neighborhood around unstable poles in consid-
ering S.
Theorem 2.1 states that if we agree to fix a compact set S
and search our controller K in this set, there exists N for a
given ε such that if ‖T N

zw(K)‖ < γ then ‖Tzw(K)‖ < γ+ε.
That is, a controller designed by the N -step approximation
indeed approximates the performance of the solution to the
original problem without approximation. Furthermore, if
‖Tzw(K)‖ < γ and if K is known to be in S, then it can be
found with error tolerance ε by taking N large enough.

It remains to show the following lemma on the continuity of
the closed-loop operator with respect to K .
Lemma 2.3 Consider the closed-loop operator Tzw(K)
where K is assumed to be stable and stabilizing. Then
Tzw(K) is continuous in K with respect to the H∞ norm.
Sketch of Proof Let ‖K ′ −K‖∞ < δ with K,K ′ stabiliz-
ing. Put ∆ := K ′ −K , and we can easily rewrite Tzw(K ′)
involving ∆ and the nominal closed-loop operator Tzw(K).
Then for sufficiently small δ, ‖∆‖∞ < ε enables us to in-
voke the small-gain theorem, and the result follows. �

3 Estimating the Upsampling Factor N

Theorem 2.1 above guarantees that we can rely on fast-
sampling approximations for designing a sampled-dataH∞

stable controller, by taking the upsampling factor N suffi-
ciently large. Our next question is naturally how large such
an N should be.

To the best of our knowledge this question has not been
investigated in depth in the literature even for the analysis
problems (except [4] for L1 control problem). We give an
answer to this by invoking certain a priori bounds and esti-
mates for plants and controllers. Consider Fig. 1 again.

Let Tzw(ejωh) denote the frequency response operator as-
sociated with the closed-loop transfer operator Tzw . We
will omit the dependence on K hereafter. This opera-
tor is also equivalent [13] to the notion of the so-called
FR operator [2]. We denote this operator by T (ω). In
essence, T (ω) is nothing but the (infinite) matrix represen-
tation of Tzw(ejωh) with respect to an orthonormal basis
{exp(j(ω + 2nπ/h)t}∞n=−∞ in L2[0, h] [13].

Let us first note the following formula for T .

Proposition 3.1 Let Pij , Tzw and T (ω) be as above, and
suppose that the closed-loop system is stable. Let P ∗

22 de-
note the pulse-transfer function associated with P22, and let
V := (I − P ∗

22K)−1. Then the (i, k) entry T ik(ω) of T is
given by

T ik(ω) = P11(jωi) + (2)
1
h
P12(jωi)Ĥ(jωi)K(ejωh)V (ejωh)P21(jωk)

Outline of Proof Follow the proof in Yamamoto and
Araki [13] given for the unity feedback case. �

3.1 A Special Case
In what follows we first make the following assumptions:

(A) P11 = 0.

(B) Each Pij is an SISO system.

(C) |P21(jω)| is rational and monotone decreasing for
ω > 0.

The first assumption is somewhat specialized, but it greatly
simplifies the subsequent arguments. We will discuss a gen-
eralization in the next subsection. The second assumption is
just for convenience of notation, and it does not lead to any
real loss of generality. The third assumption is also placed
to simplify the subsequent arguments. If this is not satis-
fied by a possible peak in the high frequency region, then
we should simply replace it by a suitable SISO anti-aliasing
filter to estimate the norm of T .

Denote by T (L,M) the principal submatrix
{T ij}0≤i≤L,0≤j≤M of T . We allow L,M to be ∞
as a special case, in which case the respective ≤ in the
indices should be replaced by <.

Let us first note the following:

Lemma 3.2 Assume (A)–(C) above, and let C0 :=
sup0≤ω≤2π/h

√∑∞
n=1 |P21(jωk)/P21(jω)|2, where ωk :=

ω + 2kπ/h. By assumption (C), this quantity is finite. Then

‖T ‖ ≤ C0‖T (∞, 0)‖. (3)

In other words, only the base-band inputs are enough to
estimate the norm of T .

Proof Let ejωkt be the k-th aliased input. When it is ap-
plied to the system, it first goes through P21(s) with steady-
state output P21(jωk)ejωkt. After sampling, this becomes
a discrete-time signal {P21(jωk)ejω�h}∞�=0. Hence the
steady-state output corresponding to the input

∑
αke

jωkt

is also realized by an input (
∑

k αkP (jωk)/P (jω))ejωt.
Since |

∑
k αkP (jωk)/P (jω)| ≤ C0

√∑
k |αk|2 by

Schwarz’s inequality, the norm of T is easily seen to be
bounded by the right-hand side of (3). �

Remark 3.3 Since |P21(jωk)/P21(jω)| decays by arith-
metic progression, C0 is roughly estimated by π/

√
6.

Let us next investigate how large M for T (M, 0) should be
taken to estimate T (∞, 0).

Proposition 3.4 Given ε > 0, there exists M such that

|T i0| ≤
ε

C0π/
√

6
, |i| > M. (4)

This in turn yields the estimate

‖T − T (M, 0)‖ < ε. (5)



Proof Note first that Ĥ(jω) = (1− e−jωh)/jω is strictly
proper and monotone decreasing. Hence (2) and assumption
(A) imply the existence of M .

To compute the induced norm T − T (M, 0), note first that
as in Lemma 3.2

‖T − T (M, 0)‖ ≤ C0‖T (∞, 0) − T (M, 0)‖ (6)

holds. Since T (∞, 0)−T (M, 0) is a single column vector,
we have, by the Schwarz inequality,

‖T (∞, 0) − T (M, 0)‖2 ≤
∑
i>M

|T i0|2

≤
∑
i>M

ε2

|i−M |2 = π2ε2/6.

This, along with (6), implies (5) �
Remark 3.5 If P12 is strictly proper with relative degree
r, then the last estimate can be improved to

∑
i>M ε2/|i −

M |2(r+1).

Remark 3.6 Suppose P12 = 1/(1 + Ts) with 1/T ∼
π/2h, i.e., the bandwidth is about half the Nyuqist rate. This
implies that M = 3 means the bandwidth 6π/h > 5π/h =
10 × π/2h = 10/T , i.e., 1 decade. Hence it rougly decays
at least by −20dB. More generally, if P12 is strictly proper,
then it decays by order 2, and hence M = 3 guarantees ε to
be of order 10−2.

Proposition 3.4 tells us how many blocks we should take
to compute T . This in turn means that we need sinusoids
ejωt up to the frequency ω = 2Mπ/h to attain the desired
accuracy as specified in this proposition. The rest of the
work is then to estimate the upsampling factor N to obtain
the accuracy of (4). We have the following estimate for a
typical case.

Proposition 3.7 Assume sup0≤ω≤2π/h |P21(jω)| = 1 for
simplicity, and put C(z) := K(z)V (z), ψ(ω) := |1 −
ejωh/N |. Suppose also that |P12(jω)| is bounded by
1/

√
1 + ω2T 2 for some first order plant 1/(1 + Ts) with

1/T ≈ π/h. Likewise, we also assume |C(ejωh)| and
|P21(jω)| are also bounded by 1/

√
1 + ω2T 2 at least up

to the Nyquist frequency π/h. Then |T i0(ω)| decays by
−40dB/dec, and attains the maximum error level of 0.022
when N = 5.

Outline of Proof By the assumptions,

|T i0(ω)| ≤
∣∣P12(jωi)(Ĥ(jω)/h)C(ejωh)P21(jω)

∣∣.
at each frequency. Sampling ejωt at t = kh/N , k =
0, 1, 2, . . . induces the error ψ(ω)ejωt which is bounded by
ψ(ω). Then the total error in |T i0(ω)| induced in fast sam-
pling is bounded by

ψ(ω)|P12(jω)(Ĥ(jω)/h)C(ejωh)P21(jω)|. (7)

Here |Ĥ(jω)/h| = |(1 − ejωh)/jωh| is bounded by
min{1, 2/ω}, which decays at −20dB/dec in the high fre-
quency range. The same can be said of |P21(jω)| in the high

frequency range. Furthermore, when close to the Nyquist
frequency, both |C(ejωh)| and |P21(jω)| are bounded by
1/

√
1 + ω2T 2, so that they contribute to the decay of

T i0(ω) at least up to the Nyquist frequency. On the other
hand, ψ(ω) governs the error in the low frequency range,
and this is determined by the upsampling factor N . It is
easy to compute the order of ψ(ω) and see that it is of order
ωh/N for small ω (by Taylor expansion), and bounded by
2 for large ω (note |ejωh/N | = 1). For N = 5, this is about
0.62 at the Nyquist frequency, and increases monotonically
up to Nπ/hrad/sec. But then the high-frequency roll-off
of Ĥ(jω)/h becomes prevalent, and the overall product de-
cays approximately by −40dB/dec. A numerical computa-
tion exhibits that the overall maximum is attained at around
1rad/sec with value of 0.022 in gain (i.e., about −33dB).
�
Remark 3.8 The above estimate is overly conservative.
This conservativeness arises from using ψ(ω) for the sam-
pling error. While it is certainly correct for a single sinu-
soid, we should note that the gain of T (ω) is obtained as
the response against the worst-case input. Thus, even for
each frequency, it is possible to consider a piecewise con-
stant input, different from the one obtained by sampling the
sinusoid, but giving rise to less error. In fact, just by shift-
ing the sampled input by half the upsampling step size, one
achieves a substantially small error in L2-norm. For an in-
put ejωt, this is just a phase shift (advance) by h/2N , and
is achieved by multiplying ejh/2N . The resulting sampled
output has phase advance by h/2N against the output re-
sulting from ejωt. In the case of the proposition above with
N = 5, the overall L2 error in one upsampled step h/N is
at the level of 0.007—approximately 1/10 of the error esti-
mated by ψ(ω). This explains the true reason why the fast-
sampling approximation works so well in computation of
the frequency response and H∞ designs for sampled-data
systems. (In fact, even N = 3 works in the case above.)

We now turn our attention to estimating the approximation
level in the fast-hold in the input term. In view of Lemma
3.2, it is enough to estimate T (∞, 0). This means we need
only consider the single sinusoid ejωt for each ω. If we
approximate this by the fast-hold of stepN , there will again
be an error proportional to ψ(ω) above. However, what is
different here is that we can arbitrarily change the fast-hold
input function uN(t) to attain the norm of the operator. In
particular, we can change it so that the sampled values after
going through P21(s) at the original sampling period match
those derived from input ejωt.

We start with the following:

Lemma 3.9 Suppose there exists T > 0 such that

|P21(jω)| ≤
∣∣∣∣ 1
1 + jTω

∣∣∣∣ (8)

Let V denote the operator obtained by replacing P21(s) by
1/(1 + Ts) in T (∞, 0). Then the error in the norm of
T (∞, 0) induced by the fast-hold Hh/N is less than that
of V induced by Hh/N .



Proof Since |P21| is assumed to be monotone decreasing,
(8) is not restrictive.

Note that in view of (2) T (∞, 0) can be decomposed as
T (∞, 0) = ΓP21 for some Gamma. Then we have

‖T (∞, 0)(ω)‖ = |P21(jω)|‖Γ(jω)‖
≤ |1/(1 + jTω)|‖Γ(jω)‖
= ‖1/(1 + jTω)Γ(jω)‖ = ‖V (ω)‖.

This means that the error arising from fast-hold Hh/N can
be bounded by that of V . �
This lemma reduces the problem to the simple case
P21(s) = 1/(1 + Ts).
Lemma 3.10 Let P21(s) = 1/(1 + Ts), and the sampling
period h not pathological, i.e., the zero-order hold equiva-
lent of P21 be minimal. Then for any N ≥ 1, and for any
input u = ejωt, there exists a piecewise constant input v
(with step length h/N ) with the same norm as u such that
the sampled output value of P21 at kh, k = 0, 1, 2, . . . are
identical to those produced by u.

Proof We prove that starting from the zero initial state, it
is possible to find v with the same norm as u such that at
t = h the attained state is equal to that produced by input
u. Observe first that without the norm constraint there is
always such a v because the zero-order hold equivalent sys-
tem remains reachable by hypothesis, and N ≥ 1. Thus we
need only to guarantee that the minimum norm among such
v does not exceed that of u. This is governed by the norm
of the reachability (controllability) Grammian∫ h

0

eAtBBT eAT tdt (9)

or by N∑
k=0

(eAh/N )kB̃B̃T (eAT h/N )k (10)

for the hold-equivalent system, where (A,B,C) is a mini-

mal realization of P21 and B̃ =
∫ h/N

0 eAtBdt. It is routine
to check that (10) coincides with (9) for a first-order system.

Then the least norm of such v does not exceed that of the
least norm of a continuous-time input attaining the same fi-
nal state at t = h. They by lifting this piecewise constant
input in the period h, we obtain an input which gives rise to
the same sampled values at t = kh, k = 0, 1, 2, . . . . �
This lemma guarantees that the fast-hold device does not
deteriorate the norm estimate of T . This is a consequence
of the fact that we look for the worst-case inputs (hence the
intermediate behavior of the input in fast-hold need not be
the same as the original sinusoid ejωt).

3.2 Outline of the general case P11 
= 0
When P11 
= 0, the argument above applies to the estimate
on the effect of sampling of outputs. The difference is that
we cannot count exclusively on the effect of the hold Ĥ(s)
and the discrete-time controller for the high-frequency roll-
off, so that it is reasonable to assume −20 or −40dB/dec

decay for P11. But aside from this, the argument in Remark
3.8 applies, so the error in the low frequency range can be
expected to be very low, even for relatively small N .

On the other hand, since there is no sampling in the in-
put term, we cannot invoke Lemma 3.10 for estimating the
error arising from the fast-hold inputs. This requires fur-
ther study, but at least, the worst-input analysis as given in
Remark 3.8 will help ensure that the convergence is much
faster than might be normally expected.

4 Digital Redesign via Fast-Sampling

In this section, we treat a digital redesign problem by using
the fast-sampling method. We will show that the problem
reduces to a convex optimization problem.

Consider the continuous-time feedback system shown in
Fig. 3. In the figure, P is a continuous-time plant and K
is a continuous-time controller.

−

+w zPK

Figure 3: Continuous-time feedback system

Many methods are known for designing such a controller,
while the implementation often needs a discrete-time con-
troller. Therefore the feedback system may be realized as
a sampled-data system shown in Figure 4. In the figure,

F Sh KF Hh P
−

+w z
K ′

Figure 4: Sampled-data feedback system

F is an anti-aliasing filter for sampling which is stable and
strictly proper.

Then our problem is stated as follows:

Problem 1 Given a stable continuous-time controllerK(s)
which stabilizes the feedback system in Fig. 3, find an FIR
controller KF which approximates the performance of the
continuous-time system.

To achieve a good approximation, we optimize the H∞ er-
ror between the systems in Fig. 3 and Fig. 4. Let K ′ :=
HhKFShF and Tzw(·) denote the transfer operator from w
to z depending on the situation, e.g. Tzw(K) := PK(I +
PK)−1. Then we express the problem above as an H∞

optimization problem:

Problem 2 Given γ > 0, find an FIR controller KF which
satisfies

‖Tzw(K) − Tzw(K ′)‖∞ < γ (11)

In order to make the problem a convex optimization, we first
apply a first-order approximation in K − K ′ to the error
system

Tzw(K) − Tzw(K ′) ≈W (K −K ′)V



whereW := (I+PK)−1P and V := (I+PK)−1. There-
fore the sampled-data error constraint (11) can be converted
to the error constraint

‖W (K −K ′)V ‖∞ < γ. (12)

Then we apply the fast-sampling approximation to the
sampled-dataH∞ optimization problem (12), which can be
a discrete-time H∞ optimization:

‖G1(z) −G2(z)KF (z)G3(z)‖∞ < γ (13)

where G1, G2 and G3 are fast-sampling approximations of
W (s)K(s)V (s), W (s)Hh and ShF (s)V (s) respectively.
Let the FIR controller KF :=

∑N−1
k=0 αkz

−k. Since G1 +
G2KFG3 is affine in KF (or the parameters αk), the prob-
lem of minimizing the left side of (13) can be expressed as
a convex optimization, which can be easily solved by some
methods, e.g. the LMI or the cutting-plane method [5].

5 Design Example

In this section, we study the example given in [10]. The
upsampling factor N for fast-sampling is 5, and the order
of the FIR controller is 63. For comparison, the following
controllers are also given:

• H∞-optimal sampled-data IIR controller (designed
by the fast-sampling approximation).

• reduced order IIR controller of the continuous-
time H∞-optimal controller obtained by frequency-
weighted balanced truncation [10].

Fig. 5 shows the gain comparison of the error Tzw(K) −
Tzw(K ′) (see (11)) for the optimal FIR, the optimal IIR and
the balanced truncation. It can be seen that the maximum
gain of the error (i.e. H∞ norm) with FIR is better than that
with the balanced controller.

To illustrate the difference in the performance with these
controllers, we show the gain of the sampled-data feedback
system Tzw(K ′) and the original continuous-time Tzw(K)
in Fig. 6. In the figure, we can see that the system with the
balanced controller has a peak around ω = 0.8 [rad/sec].
On the other hand, the FIR controller does not show such a
peak although it shows larger errors in the high frequency
range.
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