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Abstract

Wavelet theory provides a new type of function expan-
sion and and has found many applications in signal
processing. Discrete wavelet transform of a signal x(t)
in L2(R) is usually computed by the so-called pyra-
mid algorithm. It however requires a proper initial-
ization, i.e., expansion coefficients with respect to the
basis of one of the desirable approximation subspaces.
An interesting question is how we can obtain such coef-
ficients when only sampled values of x(t) are available.
This paper provides a design method for a digital filter
that optimally gives such coefficients assuming certain
a priori knowledge on the frequency characteristic of
the target functions. We then extend the result to the
case of non-orthogonal wavelets. Examples show the
effectiveness of the proposed method.

1 Introduction

Wavelet theory provides a new type of signal represen-
tation: it expands functions in terms of small waves,
localized both in time and frequency, in contrast to
Fourier analysis where basis functions are sinusoids. It
hence applies to many cases where local information
is important, for example, image compression. In par-
ticular, discrete wavelet transform fits naturally with
the digital computer with its basis functions defined
by summations but not integrals or derivatives.

Wavelet analysis of a signal begins by approximation by
projecting it onto one of the approximation subspaces,
which is spanned by shifted scaling function, constitut-
ing multiresolution analysis. This determines the finest
resolution, and one is led to find expansion coefficients
of coaser orders. The pyramid algorithm [8] can then
be invoked to obtain such lower scale approximation
coefficients. Furthermore, this can be implemented by
a multirate filter bank [6, 8, 9]. In this procedure, one
has to first find expansion coefficients with respect to
the basis formed by the shifted scaling functions. The
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subsequent approximation accuracy in the pyramid al-
gorithm depends on these coefficients.

In digital signal processing, however, it is more common
practice that only sampled values of signals are avail-
able. Then it is not possible to accurately compute
such expansion coefficients in the first place. One may
then directly employ the sampled values as such coeffi-
cients, with the idea that the intersampling changes are
not large. This is convenient, but obviously not satis-
factory from thea theoretical point of view, and hence
referred to as “wavelet crime” by Strang and Nguyen
[8].

Pu and Francis [7] gave an optimal filter to initialize
the expansion from sampled values, and also gave an
error analysis. They have shown that the wavelet crime
can lead to a very large error. On the other hand, their
filter is not causal and infinite-dimensional, and hence
not easily realizable.

We instead propose to use a finite-dimensional and
causal (with finite-time delay) digital filter; for its de-
sign, we assume a certain frequency domain character-
istic, and employ the sampled-data control theory as
per [5, 11, 12, 13] etc. While the performance may
become less optimal compared to that of [7], it is eas-
ily realizable and, moreover, as we see later, it can be
extended to non-orthogonal wavelets.

The paper is organized as follows: We first introduce
discrete wavelet transform and formulate our problem.
We reduce this to an equivalent discrete-time H∞ prob-
lem. Then these results are extended to the case of
oversampled signals and non-orthogonal scaling func-
tions. The optimal filter is compared with the conven-
tional wavelet crime to exhibit the difference.
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2 Problem Formulation

2.1 Discrete Wavelet Transform
We begin with the basic setup in wavelet theory [6, 8].
For the signal space L2(R), a multiresolution analysis
(MRA) is a series {Vj}j∈Z of closed subspaces having
following properties:

1. Vj ⊂ Vj+1 for all j ∈ Z
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2. lim
j→−∞

Vj = {0} and lim
j→∞

Vj = L2(R)

3. f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1

4. f(t) ∈ V0 ⇔ f(t− kh) ∈ V0

5. V0 is spanned by {φ(· − kh)}k∈Z

where h > 0 is fixed. The function φ in condition
5 is called a scaling function and Vj is spanned by
{φj,k}k∈Z where

φj,k(t) := 2j/2φ(2jt− kh)

for all j ∈ Z according to condition 3. Thus for x(t) ∈
L2(R), its orthogonal projection vj(t) onto Vj is viewed
as the approximation of x(t) at scale j. The scale of
the resolution increases as we move up in the nest.

The wavelet subspace W0 is defined to be the orthogo-
nal complement of V0 in V1.

V1 = V0 ⊕W0

which extends to

L2(R) = Vj0 ⊕Wj0 ⊕Wj0+1 ⊕ · · · . (1)

Since these wavelets reside in the space spanned by the
subsequent space spanned by the shifted and dilated
scaling functions Wj ⊂ Vj+1 follows; i.e.,

ψ(t) =
∑

k

h(k)φ(2t− k), k ∈ Z (2)

holds. For an appropriate series {h(k)}, the function
generated by (2) gives the mother wavelet ψ(t) such
that Wj is spanned by {ψj,k}k∈Z where

ψj,k(t) := 2j/2ψ(2jt− kh). (3)

We have now constructed a set of functions that could
span all of L2(R). According to (1), any function
x(t) ∈ L2(R) could be written as a series expansion
in terms of the scaling function and wavelets:

x(t) =
∞∑

k=−∞
cj0(k)φj0,k(t) +

∞∑
k=−∞

∞∑
j=j0

dj(k)ψj,k(t).

(4)
This is called the wavelet expansion and Discrete
Wavelet Transform (DWT) is the map from x(t) ∈
L2(R) to {(cj0(k), dj0(k), dj0+1(k), . . .)}k∈Z ∈ l2(Z).

2.2 Computation of DWT
Firstly it is known that we can apply the filter bank
shown in Figure 1 to compute {dj−1(k)}k∈Z and
{cj−1(k)}k∈Z along with {cj(k)}k∈Z [8]. Here HPF and

✲�

✲

HPF

LPF ✲

✲

✲

✲↓ 2

↓ 2

cJ(k) dJ−1(k)

cJ−1(k)

Figure 1: First stage of hte pyramid algorithm.

LPF denote, respectively, the ideal highpass and low-
pass filters with cutoff frequency π/h[rad/sec], and ↓ 2
is a downsampler defined by

↓ 2 : �2(Z) −→ �2(Z) : {x(k)}k∈Z �→ {x(2k)}k∈Z .

In practice, computation of the DWT of x(t) ∈ L2(R)
goes as follows:

1. Select some level J where vJ(t) ∈ VJ represents
x(t) to a desired degree of resolution.

2. If the approximation coefficients at this level
{cJ(k)} k∈Z are available, we can obtain
{dJ−1(k)}k∈Z and {cJ−1(k)}k∈Z by filter bank
above.

3. Since we can similarly obtain {dj−1(k)}k∈Z and
{cj−1(k)}k∈Z along with {cj(k)} k∈Z, repeat a
number of times down to the coarsest desired
scale j0.

This algorithm is called the pyramid algorithm.

As shown in step 2, the pyramid algorithm should be
initialized by {cJ(k)} k∈Z. In what follows, we first
consider the case of orthogonal wavelets.

Assumption 1 Scaling function φ is orthonormal,
i.e.,

〈φ(t), φ(t− kh)〉L2(R) = δk,0

for all k ∈ Z.

where δij denotes the Kronecker delta.

This assumption makes {φJ,k}k∈Z an orthonormal sys-
tem of VJ and the projection coefficients are given by
the inner product 〈x, φJ,k〉L2(R). However even in this
case it will be difficult to compute by means of its def-
inition itself. Since often only sampled data of x(t)
are available, common practice is to use these sam-
pled values directly in place of the correct coefficients
{cJ(k)} k∈Z. Because this is of course for convenience
and causes errors, it is called the “wavelet crime” in [8].
Our problem here is to compute {cJ(k)} k∈Z directly
from these samples via digital filters. This problem is
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called the optimal initialization problem of the DWT
and is formulated and solved by giving an optimal so-
lution in [7].

2.3 Problem Formulation

W e−mhs ✲

Sh

S̃h

Kd

✲ �

✲

✲

❞❄✲ ✲✲

w(t) x(t) c0(k)

e(k)+
−

Figure 2: Error system

We formulate the design problem of a digital filter for
optimal initialization. Let J = 0 without loss of gen-
erality. Consider the block diagram Figure 2. We first
take m = 0. It is appropriate to consider a class of
functions x(t) for such expansion, and as in H∞ control
theory, we attempt to minimize the L2-induced norm
from w to the error e. W is an LTI weighting low-pass
filter that makes this problem well-posed. This governs
the frequency domain characteristic of the target func-
tions. For a given scaling function φ, S̃h is the operator
defined by

S̃h : L2(R) −→ �2(Z) : x(t) �→ {c0(k)}k∈Z .

Sh denotes the sampler with sampling period h. Kd

is the digital filter to be designed. The upper path
gives the idealized wavelet expansion coefficients for x
whereas the lower path gives an approximant resulting
from a sampler and a digital filter. The objective here
is to minimize the L2-induced norm of the operator

Tew : L2(R) −→ �2(Z) : x(t) �→ {e(k)}k∈Z . (5)

In other words, the worst case norm of this block dia-
gram against signals in L2(R).

Problem 1 For m = 0, given stable W (s) and or-
thonormal scaling function φ, find a digital filter Kd(z)
which minimizes ‖Tew‖ in (5).

Pu and Francis [7] have shown the following theorem
for this problem.

Theorem 1 Problem 1 has the (not necessarily
unique) solution

k̂d(ejωh) =
∑

k |ŵ(jωh+ j2πk)|2φ̂(−jωh− j2πk)∑
k |ŵ(jωh+ j2πk)|2

and the corresponding worst case error norm is[
sup

ω

∑
k

∣∣∣[k̂d(ejωh) − φ̂(−jωh− j2πk)
]
ŵ(jωh+ j2πk)

∣∣∣2
]1/2

.

Here k̂d(ejω), ŵ(jω) and φ̂(jω) denote discrete-time
or continuous-time Fourier transform of Kd, W and φ
respectively.

Unfortunately, this filter in Theorem 1 is neither causal
nor finite-dimensional, hence difficult to implement.
We thus reformulate the problem as follows: First note
that

(S̃hx)(k) = 〈x, φ0,k〉L2(R)

=
∫ ∞

−∞
x(t)φ(t− kh)dt

=
∫ ∞

−∞
x(t)φ̌(kh− t)dt

= Sh(Fx)(k).

Here F denotes a continuous-time linear time-invariant
system with impulse response φ̌(t) := φ(−t). This
means that Problem 1 is an optimal discretization
problem of non-causal continuous-time system F. In
view of this, we make yet another assumption.

Assumption 2 There exists an integer l > 0 such that
the scaling function φ(t) has compact support in [0, lh],
i.e.,

φ(t) = 0, t /∈ [0, lh]. (6)

Many well-known wavelets satisfy this assumption, for
example, Haar scaling function φH and 2nd order B-
spline (triangle) spline φT defined by

φH(t) =
{

1, t ∈ [0, h]
0, otherwise,

and

φT (t) =




t, t ∈ [0, h]
2h− t, t ∈ [h, 2h]

0, otehrwise,
. (7)

With this assumption, form ≥ l allowing anm step de-
lay, the error system showed in Figure 2 become causal.
Our design problem then becomes as follows:

Problem 2 Given an integer m > 0, stable W (s)
and scaling function φ satisfying Assumptions 1 and
2, find a digital filter Kd(z) that minimizes ‖Tew‖ in
(5), where (A,B,C) denotes a minimal realization of
W .

3 Reduction to finite dimensional problem

Suppose l = 1 for simplicity; the same method applies
to the case of l > 1.

First we apply the lifting technique [1, 10] to
continuous-time signals in Figure 2, and x̃[k](θ) denotes
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lifted signal, i.e., x̃[k](θ) := x(kh+ θ). By lifting x and
w, we can obtain a lifted representation of system W

X(k + 1) = eAhX(k) +
∫ h

0
BeA(h−τ)w̃[k](τ)dτ

x̃[k](θ) = CeAθX(k) +
∫ θ

0 Ce
A(θ−τ)Bw̃[k](τ)dτ.

where A ∈ Rn×n and X(k) ∈ Rn. We then have, from
(6), that

(S̃hx)(k) =
∫ (k+1)h

kh

φ(t− kh)x(t)dt

=
∫ h

0

φ(τ)x(kh+ τ)dτ

=
∫ h

0

φ(τ)x̃[k](τ)dτ.

The error system in Figure 2 for m = l − 1 can be
rewritten as that in Figure 3 where

Ad := eAh ∈ Rn×n

B1 : L2[0, h] −→ Rn : x̃(τ) �→
∫ h

0

eA(h−τ)Bx̃(τ)dτ

Cd1 :=
∫ h

0

CeAθφ(θ)dθ ∈ R1×n

D11 : L2[0, h] −→ R
: w̃(τ) �→

∫ h

0

∫ θ

0
CeA(θ−τ)Bφ(θ)w̃(τ)dτdθ.


 Ad B1 0
Cd1 D11 −1
C 0 0




Kd

✛ ✛

✲

✛

e(k) w̃[k]

Figure 3: Error system

This can be converted ([2, 3]) to an equivalent discrete-
time system by defining Bd1, Dd11 as

LLT :=
[

B1

D11

] [
B∗

1 D∗
11

]
,

[
Bd1

Dd11

]
:= L.

Therefore we can obtain the following theorem.

Theorem 2 Problem 2 is equivalent to an �2 induced
norm minimization problem of discrete-time system
in Figure 4. Here Gdt is given by (8) and Adt ∈
R(n+m)×(n+m).

Gdt =
[
Adt Bdt

Cdt Ddt

]

:=




Ad 0 · · · · · · 0 Bd1 0
Cd1 0 · · · · · · 0 Dd11 0
0 1 0 · · · 0 0 0
...

. . . . . . . . .
...

...
...

0 · · · 0 1 0 0 0
0 0 · · · 0 1 0 −1
C 0 · · · · · · 0 0 0



(8)

Gdt

Kd

✛ ✛

✲

✛

Figure 4: Equivalent discrete time system

For l > 1, we can apply the same method by lift-
ing the scaling function. This problem is solvable
(sub)optimally and the dimension of the obtained filter
does not exceed n+m.

4 Extensions

We now give some generalizations, including the case
of non-orthogonal wavelets.

4.1 Projection onto higher resolution subspace
We have given a procedure to optimally initialize the
wavelet expansion, i.e., optimally projecting onto V0

which has the same scale of resolution as the sampling
rate. It is however possible to project onto a subspace
with a higher scale resolution than V0, by making use
of a given frequency distribution (i.e., weighting W ) of
the original signals. This leads us to the design problem
depicted in Figure 5.

W ✲

Sh

S̃h/2J

↑ 2J Kd

✲ �

✲

✲

❞❄✲ ✲✲ ✲

w(t) x(t) cJ(k)

e(k)+
−

Figure 5: Error system

The differences with Problem 2 are S̃h/2J and ↑ 2J .
First define S̃h/2J :

S̃h/2J : L2(R) −→ �2(Z) : x(t) �→ {cJ(k)}k∈Z ,

and the output of upper path is cJ(k). In accordance
with this, the sampled values are also upsampled by
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↑ 2J to match with the upper path in the sampling
rate:

↑ 2J : �2(Z) −→ �2(Z)

: v(k) �→ u(k) :=
{
v(k) , k = 2J l, l = 0, 1, . . .

0 , otherwise

and processed by Kd(z). This gives an approximation
problem in the space VJ instead of V0.

A difficulty here is that the overall error system be-
comes multirate due to the upsampler, but one can re-
duce this problem to a single-rate problem via discrete-
time lifting [4, 3, 11, 12].

4.2 Non-orthogonal scaling function
When Assumption 1 is not satisfied, taking the inner
product with the scaling function does not directly give
projection coefficients. In such a case we can employ
the dual basis {ξk(t)}k∈Z such that

〈φ0,p, ξq〉L2(R) = δp,q. (9)

According to MRA, we can take

ξk(t) =
∑

k

g(k)φ(t− k), k ∈ Z. (10)

for the dual basis. Here desirable coefficients given by
〈x, ξk〉L2(R) are represented as

c0(k) =
∑

l

g(l)c′0(k + l), k ∈ Z

where c′0(k) = 〈x, φJ,q〉L2(R). Truncating the sum
above suitably to approximate the expansion, we can
obtain c0(k) along with c′0(k) via FIR digital filter

KL(z) =
lf∑

l=ls

g(l)zl−lf .

For c′0(k) we can apply the method in the previous
section.

5 A Design Example

We present a design example for the case of the Haar
and 2nd order B-spline wavelets. Put the sampling
period h = 1, delay step m = 2 and weighting function
W (s) be

W (s) =
1

(Ts+ 1)(10T s+ 1)

where T := 22.05/π. Note here that the sampling rate
for audio CD (and MD) is 44.1kHz, and the above
time constants correspond to the frequecies 1kHz and
10kHz when normalized to h = 1. The weighting W
above simulates a fairly wide-range orchestral music
frequency energy distribution observed in many com-
mercial CD’s.

We first compare the present method with that by the
“wavelet crime.” Note that the Haar wavelet satisfies
Assumption 1. Figures 6, 7 show the time responses of
the two methods against the source signal x(t) = 4 sin t.
Figure 6 shows the projection onto V0 whereas Figure 7
shows the projection onto V1, per the method given in
Section 4.2. The latter exhibits more fidelity. Figure 8
exhibits the corresponding squared error. The present
filter shows much advantage over the wavelet crime.

30 32 34 36 38 40 42 44 46 48 50
−4

−3

−2

−1

0

1

2

3

4

time[sec]

Figure 6: Time response: source signal (dotted), wavelet
crime(dash) and proposed (solid)
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Figure 7: Time response: source signal (dotted) and pro-
posed (projection onto V1) (solid)

Now consider the 2nd order B-splines. The scaling
function is φT given by (7). Note however that this
does not satisfy Assumption 1 and its corresponding
subspaces consist of piecewise linear functions. For this
scaling function the dual basis is given by (10) where

g(l) =
√

3(
√

3 − 2)|l|.

Here we take

KL(z) =
3∑

l=−3

g(k)zl−3
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30 32 34 36 38 40 42 44 46 48 50
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time[sec]

Figure 8: Time responses of squared errors: wavelet crime
(dash), projection onto V0 (dotted) and projec-
tion onto V1 (solid)

and the total delay is taken to be 5 steps. The results
for x(t) = sin 0.3t+ 0.5 sin t are shown in Figure 9, 10.

30 31 32 33 34 35 36 37 38 39 40
−1.5

−1

−0.5

0

0.5

1

1.5

time[sec]

Figure 9: Time response: source signal (solid), wavelet
crime(dash) and projection onto V0(dotted)

Both examples exhibits quite an admirable perfor-
mance of the proposed method.

6 Concluding Remarks

We have presented a new method, based on sampled-
data control theory, for designing a digital filter in the
optimal initialization problem of the DWT. The ob-
tained filters are finite-dimensional and show advan-
tages to a naive representation of using sampled val-
ues directly. We have also extended the results to
the higher order expansion and to the non-orthogonal
wavelets.
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