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Abstract

This paper proposes a new design methodology for dig-
ital filters, interpolators/decimators and sample-rate
converters, based on the modern sampled-data control
theory. In contrast to the conventional filter designs
where the methods are mostly based on frequency do-
main approximation techniques, the proposed method
makes use of the sampled-data H* control theory,
thereby allowing for optimizing the intersample behav-
ior and aliasing effects. The novel feature here is that
the proposed method can optimize the analog-domain
performance over all frequency ranges, thereby guar-
anteeing a desirable performance without breaking the
design problem into several different steps, such as lin-
ear phase characteristic, optimal attenuation level de-
sign, etc. A design example is presented to show the
advantages of the present method.

1 Introduction

Digital filter design is, in a sense, an art of approxi-
mation which takes many different specifications into
account in several different steps: linear phase shift
property, smooth pass-band transmission, high attenu-
ation level in the stop band, desirable transition band
characteristic, etc. Many guiding quantities have been
introduced to help the designer [5, 9, 10].

However, such a design can be quite complicated, and
require trained skills. It is furthermore executed mostly
in the discrete-time domain. The continuous-time per-
formance is indirectly discussed via the notion of alias-
ing.

One may however note that, in many applications, the
performance we wish to optimize is still in the analog
domain: speech/audio is one example; visual images
are another. While one may start with the digitized
data in which case an analog-domain performance can-
not be adequately discussed, there are many other cases
where we can discuss the basic characteristics of the
original analog data. For example, in audio recordings,
we have a fairly good idea on how the frequency char-
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acteristics are for recorded signals. Recovering such
signals optimally in the sense of analog performance is
clearly an important issue.

One of the fundamental problems in this context is that
of sample-rate conversion. In commercial applications,
there are many different sampling rates employed: for
example 48kHz for DAT and 44.1kHz for audio CD.
The conversion from one sampling rate to the other
becomes necessary. In such a process, it is clearly re-
quired that the information loss be as little as possible.

The conventional way of doing this goes as follows:
Suppose we want to convert a signal vy is with sam-
ple rate 1/h; Hz to another signal u4 with sample rate
1/hs Hz. Suppose also that there exist (coprime) in-
tegers L and M such that hy/L = ha/M. One first
upsamples vg by factor L, to make the sampling pe-
riod hy /L. Suppose that the original signal is perfectly
band-limited in the range |w| < 1/2h;. One then in-
troduce a digital filter Hg[z] to cut out the undesirable
imaging component. After this, the obtained signal
is downsampled by factor M to become a signal with
sampling rate 1/hy Hz.

While this idea is universally employed in the current
multirate signal processing, it is based on an artifi-
cial assumption: the original signal is perfectly band-
limited. This assumption is never precisely satisfied in
reality.

Instead of assuming perfect band-limitedness, it is more
realistic to assume a prescribed frequency roll-off, and
try to optimally reconstruct the original analog sig-
nals. We have studied this problem using sampled-data
H®> control in [3] (The H® criterion in the design of
multirate signal processing has been first introduced
in [2], which is discussed in the discrete-tiem domain).
While this gives rise to a nearly optimal performance,
a possible drawback is in its computational efficiency.
This is partly due to the framework that we have em-
ployed periodically time-varying filters. While this is
executable for low conversion ratios, when the conver-
sion involves large integers, the difficulty increases. In
the case of CD — DAT conversion, where the conver-
sion ratio is 147 : 160, the resulting filter would become
147 x 160 = 23, 520 dimensional. This is unrealistic.

To remedy this, we here employ a sequential design pro-
cedure. For example, 147 : 160 can be decomposed into
3-72:25.5, and this conversion can be accomplished



by breaking this into the conversion procedures of 3 : 2,
7 : 5, etc. The overall conversion filter can be obtained
by taking the cascade combination of all these. In order
that this procedure work, we must require that

e the information loss be minimal at each step, and

e the filter at each step be of low order, so that the
order of the product filter is not very high,

e the design procedure for each step be simple.

To satisfy these requirements, we follow the following
method:

e we employ an interpolation filter design that op-
timizes the analog performance;

e we give a decimation filter design that also opti-
mizes the analog performance;

e combining these, we obtain a sample-rate con-
verter design method.

The first has been introduced in [8], and has proven to
be very effective when the original signal is not very
band-limited. Dually, we introduce an optimal deci-
mation filter design that minimizes analog information
loss. This problem is rarely discussed in the literature,
but is a crucial component of the present study. When
the signal is not quite band-limited, it will be seen
to exhibit an even more striking performance differ-
ence compared to more conventional digital filter design
methods. Finally, we show how they can be combined
to give a sample-rate converter, along with a numerical
example to exhibit the performance.

The paper is organized as follows: We first introduce
the optimal interpolator design problem using upsam-
plers, following the results of [8]. We then formu-
late and solve the optimal decimator design problem.
These problems are naturally cast into the framework
of an infinite-dimensional sampled-data control prob-
lem. The infinite-dimensionality stems from the time
delay which we allow for signal reconstruction. For this,
a fast-sample/fast-hold approximation gives an effec-
tive tool for computation. These results are then com-
bined to yield a sample rate converter. The obtained
filter is compared with the conventional equiripple de-
sign to see the difference, both in time and frequency
domain.

2 Problem Formulation

A general construction for a sample-rate converter is
shown in Figure 1. For simplicity, we assume L and
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Figure 1: Sample-rate converter
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Figure 2: Sample-rate converter

M are coprime. The first discrete-time signal vy with
sample-rate 1/hy is upsampled by 1L:

v l7 k:LLl:O,l,
L :vg — @q : palk] ={ od[] otherwise

by factor L and converted to a higher sample-rate
(L/hy) signal ¢4. Then the signal ¢4 goes through
a digital filter C(z) and the filtered signal 1,4 is down-
sampled by | M:

JKM : ’Lbd = Ug : 'U,d[k‘] = K/Jd[Mk]

by factor M and converted to a lower sample-rate
(1/hy = L/Mhy) signal ug. It is possible to formu-
late a sampled-data design problem, by taking C(z) as
an LM-periodic system [3]. A drawback here is that
when L and M are large, the filter C(z) would be of
very high order (LM-dimensional). This also presents
difficulty in numerical computation in executing the fil-
ter design.

Another construction for a sample-rate converter is as
shown in Figure 2. The idea here is to separete the
role of C(z) into two parts: One is the interpolator
K (z)(1L) that interpolates the upsampled signal, and
the other is the decimator ({ M)H (z) that decimates
the obtained signal to lower the sampling rate to match
1/had. The advantage is that the filters K (z) and H(z)
can be designed separately. Furthermore, if the inte-
gers L and M can be decomposed into L1 Ly - - - L,,, and
MM, --- M, respectively, the sample-rate converter
can be obtained as the cascade composition of respec-
tive componenst corresponding these factors as shown
in Figure 3.

Figure 3: Sample-rate converter
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Figure 4: Multirate Signal Reconstruction

Figure 5: Signal reconstruction error system

2.1 Problem for interpolator design

We start by formulating a design problem for
(sub)optimal interpolators. Consider the block dia-
gram Figure 4. The incoming signal w. first goes
through an anti-aliasing filter F(s) and the filtered sig-
nal y. becomes nearly (but not entirely) band-limited.
F(s) governs the frequency-domain characteristic of
the analog signal y.. This signal is then sampled by
Sh to become a discrete-time signal yq with sampling
period h.

To restore y. we usually let it pass through a digital fil-
ter, a hold device and then an analog filter. The present
setup however places yet one more step: The discrete-
time signal y4 is first upsampled by 1L , and becomes
another discrete-time signal x4 with sampling period
h/L. The discrete-time signal z4 is then processed by
a digital filter K(z), becomes a continuous-time signal
uc by going through the 0-order hold Hy /1, (that works
in sampling period h/L), and then becomes the final
signal by passing through an analog filter P(s). An
advantage here is that one can use a fast hold device
‘Hn,r thereby making more precise signal restoration
possible. The objective here is to design the digital
filter K (z) for given F(s), L and P(s).

Figure 5 shows the block diagram of the error system
for the design. The delay in the upper portion of the
diagram corresponds to the fact that we allow a cer-
tain amount of time delay for signal reconstruction.
Let Tye, denotes the input/output operator from w,
t0 €. := z.(t) — u.(t — mh). Our design objective is as
follows:

Problem 1 Given stable F'(s) and P(s) and an atten-
uation level v > 0, find a digital filter K(z) such that

T ew c
sup I Trewwell2 <. (1)
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2.2 Problem for decimator design
We now formulate a design problem for optimal deci-
mators. While this can be considered dually with in-
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Figure 6: Multirate Signal Reconstruction

Figure 7: Signal reconstruction error system

terpolators, it is less studied in the literature. Down-
sampling occurs usually in the filter bank design, and
its independent design has received less attention.

Consider the block diagram Figure 6. The incoming
signal w, first goes through an anti-aliasing filter F'(s)
and the filtered signal y. becomes nearly (but not en-
tirely) band-limited. This signal is then sampled by
Sh/m to become a discrete-time signal yg with sam-
pling period h/M.

The discrete-time signal y4 is first processed by a digital
filter H(z). Then the filtered signal x4 is downsampled
by 4 M: and becomes another discrete-time signal uq
with sampling period h. The discrete-time signal uq4
is then becomes a continuous-time signal u. by going
through the 0-order hold Hj, and then becomes the
final signal by passing through an analog filter P(s).
The objective here is to design the digital filter H(z)
for given F(s), M and P(s).

Figure 7 shows the block diagram of the error system
for the design. The delay in the upper portion of the
diagram corresponds to the fact that we allow a certain
amount of time delay for signal reconstruction. Let
Tpew denotes the input/output operator from w. to
ec 1= 2c(t) — uc(t — mh). Our design objective is as
follows:

Problem 2 Given stable F(s) and P(s) and an atten-
uation level v > 0, find a digital filter H(z) such that

||TDeww0||2

ITpewl| ;= sup —=—=—"=<v. (2
we€L2[0,00) llwell2

3 Reduction to A Finite-Dimensional Problem

A difficulty in Problem 1 and 2 is that it involves
a continuous time-delay, and hence it is an infinite-
dimensional problem. Another difficulty is that it con-
tains the upsampler 1 L or the downsampler | M, so
that it makes the overall system time-varying.



Following the method of [4, 6, 8], however, we can re-
duce each problem to a finite-dimensional single-rate
problem. Let (Ar,Br,Cr) be a realization of F(s)
and define the following operator:

Dy : L?[0,h) — L?[0,h)

0
Twg — / CFCAF(BiT)Bka(T)dT.
0

Theorem 1 1. Suppose |D11|| < 7 for v > 0.
Then there exist (finite-dimensional) discrete-
time systems Gri11(z), Gri2(2) and Gya1(2) such
that (1) is equivalent to

2™ G 1 (2) — Gri2(2)K(2)G iz (2)lloo < 75
3)
where K(2) is the discrete-time lifting of K (2).

2. Suppose ||D11|| < v for v > 0. Then there
exist (finite-dimensional) discrete-time systems
Gp11(2), Gp12(2) and Gpa1(2) such that (2) is
equivalent to

2= ™G p11(2) — Gp12(2) H(2)Gp21 (2)|l0 < 7(, :
4

where H(z) is the discrete-time lifting of H(z).
Proof:

1. We first reduce the problem to a single-rate prob-
lem. Define the discrete-time lifting L and its
inverse L;' by

1
Ly, = (L) :
zL.—l
L' = [1 21 z L1 (1L).
Then K (z)(1L) can be rewritten as
K()(1L) = Lp'K(z)
1
~ 0
K(z) = LiK(z)L;'| .
0

K () is an LTI, single-input/L-output system
that satisfies

KR =[1 2! z I ] K(z").
Using the generalized hold H), defined by

Hp:125veueL?  u(kh+06) =H@O)v[]
6e[0,h), k=0,1,2,...,

Figure 8: Reduced single-rate problem

where H(6) is the hold function:

1 0 0 ... 0/|,0€][0,h/L)
H(e) = 01 0 ... 0],0€[h/L,2h/L)
[0 0o ... 0 1]!06[(L—1)h/L,h)

we obtain the identity
Hyyp Lt = Ha
This yields
Hpyp K (2)(1L)Sh = Ha K (2)Sh.

Hence Figure 5 is equivalent to Figure 8. We can
then invoke the technique of [4] to reduce this to
a finite-dimensional design problem (3).

. Using the discrete-time lifting Ly, we rewrite ({

M)H(z) as

(L M)H(z) = B(z)Ly

H(z):==[1 0 0 |LyH(2)Ly,

H(z) is an LTI, M-input/single-output system
that satisfies

Using the generalized sampler S, defined by
gh:L29u|—>v€l2
u(kh)
u(kh + h/M
v[k] == ( . )
u(kh + (M —1)h/M)
k=0,1,2,...,
we obtain the identity
LrSh/ar = Sh.

Hence Figure 7 is equivalent to Figure 9. As has
been mentioned above, this can be reduced to a
finite-dimentional design problem (3).



Figure 9: Reduced single-rate problem

Note that from (5) the filter H(z) may not be causal,
thus we adopt the following filter:

H(z) =z MH(zM)

4 Approximation via Fast Sample/Hold

While the procedure above reduces Problems 1 and 2
to finite-dimensional H*® problems, these are in gen-
eral not numerically suitable for actual computation;
the formulas are quite involved, and not so numeri-
cally tractable. It is often more convenient to resort to
an approximation method. We employ the fast sam-
ple/hold approximation [1, 6]. This method approxi-
mates continuouos-time inputs and outputs via a sam-
pler and hold that operate in the period h/L or h/M.
The convergence of such an approximation is guaran-
teed in [7]. Straightforward details and formulas are
omitted.

5 A Design Example

We present a design example for the case of changing
the sampling period from h; = 1 to hy = 4/3. Then
we have L = 3 and M = 4 which are coprime. Let the
anti-aliasing filter F'(s) and P(s) for the interpolator
design be

1
F(s) = P(s)=1
6= Tsrnoarsry TW=L
those for the decimator design be
1
F(s) = P(s) =1,

(TQS =+ 1)(01T28 -+ ].) ’

where T := 22.05/w, T, := T/L which simulate the
frequency energy distribution of a typical orchestral
music. An approximate design is executed here for
N =L x 4 = 12 (interpolator) and N = M x 4 = 16
(decimator). For comparison, we compare it with the
equiripple filter[9, 10] of order 31, which is often used
in commercial applications.
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Figure 10: Frequency response of filter: C(z) (solid) and
equiripple filter (dash)
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Figure 11: Frequency response of error system Te.:
sampled-data H® synthesis (solid) and
equiripple filter (dash)

The obtained (sub) optimal interpolation filter K(z) is
of order 11 and the decimation filter H(z) of order 15.
The sample-rate conversion filter C(z) = H(2)K(2) is
of order 22.

Figure 10 shows the gain characteristics of these filters.
The equiripple filter shows a sharpest decay beyond the
cutoff frequency (7 /4 [rad/sec]) while the sampled-data
design shows a rather mild cutoff characteristic.

In spite of these superficial differences, Figure 11 ex-
hibits quite an admirable performance of the sampled-
data design.

It is interesting to observe that the slow decay need
not yield an inferior design. In fact, due to the under-
lying analog model (i.e., F(s)), there is an important
information content beyond the Nyquist frequency, and
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Figure 12: Time response (sampled-data synthesis)
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Figure 13: Time response (equiripple filter)

such a slow decay is necessary to retain such informa-
tion. To see this, let us see the time responses against
a rectangular wave in Figures 12, 13:

The equiripple filter shows a large amount of ringing,
whereas the one by the sampled-data design has much
less peak around the edge. Note also that C'(2) is nearly
linear phase up to a certain frequency as shown in Fig-
ure 14.

6 Concluding Remarks

We have presented a new sampled-data method of de-
signing a digital filter in sample-rate converters. As a
result of taking the analog performance into account,
the designed converter has yielded much more satisfac-
tory time responses.
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Figure 14: Phase plot of C(z)
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