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Abstract— A new paradigm of digital signal processing has
recently been proposed in view of sampled-data control theory.
This filter, called sampled-data H

∞ filter, approximates a
linear phase characteristic in continuous-time domain, that is,
a pure delay. By this property, we propose a new repetitive
controller including the sampled-dataH

∞ optimal filter. More-
over, to achieve the stability, we introduce the Internal Model
Control (IMC). Our method solves the problem of stability,
implementability, and inter sample ripples in digital repetitive
control. A numerical example shows the effectiveness of our
method.

I. INTRODUCTION

Repetitive control is a control scheme to be designed for
tracking periodic reference signals or for rejecting periodic
disturbances [1]. This method was first introduced in the
control of magnetic power supply for proton synchrotron [2].
Since then, a number of theoretical and industrial studies
have been made on repetitive control, see surveys [3], [4]
and references in there.

In view of the internal model principle [5], [6], repetitive
control system must include the periodic signal generator

Qc(s) =
e−Ls

1 − e−Ls

in the feedback loop. This enables us to trackarbitrary
periodic references of periodL with zero steady-state error.
There however arise two problems; stability and imple-
mentability.

The stability problem is due to the fact that the repetitive
control system is a neutral delay-differential system. By this
nature, the control system cannot be exponentially stable
if the transfer function of the plant is strictly proper [1],
[6]. To remedy this, modified repetitive control [7], [1] was
proposed, in which the repetitive controllerQc(s) is replaced
by

Qmod
c (s) =

Fc(s)e
−Ls

1 − Fc(s)e−Ls
(1)

whereFc(s) is a lowpass filter with a cutoff frequencyωc.
This repetitive control enables us to exponentially stabilize
strictly proper plants, and to well track reference signalsup
to the cutoff frequencyωc.

The modified repetitive control is a good scheme for
general plants, there however remains the second problem:
implementability. This is due to the infinite dimensionality
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of the delaye−Ls, which is difficult to implement in an
analog device. To this problem, controller discretizationis an
effective solution. In this approach, the delaye−Ls is con-
ventionally replaced by a sampled-data systemHhz−m

Sh,
whereHh andSh are respectively the zero-order hold and
the ideal sampler with sampling periodh, andm is a positive
integer satisfyingL = mh. This leads to digital repetitive
control [8] with repetitive controller

Qd(z) =
z−m

1 − z−m
.

This is the signal generator for arbitrarydiscrete-timeperi-
odic signals of an integer periodm, by which the control
system can achieve perfect tracking1 for the periodic signals
on the sampling instants.

However, it has another problem: intersample ripples. A
remedy for this is to adopt a generalized hold [9] or a multi-
rate control [10]. On the other hand, the intersample behavior
in digital repetitive control can be taken into account by
modernsampled-data control theory[11], [12]. There have
been several works on sampled-data repetitive control, see
[13], [14], [15], [16], [17].

Motivated by these works, we propose a novel repetitive
control which solves the three problems mentioned above;

• stability,
• implementability,
• and intersample ripples.

For the stability problem, we introduce the internal model
control (IMC) [18], instead of the modified repetitive control.
The principle of IMC is in incorporating the model in the
controller to handle the intrinsic difficulty in the plant. In
our case, the plant may be strictly proper and non-minimum
phase (i.e., difficult to control), and hence we place the model
into our repetitive controller.

The main idea of the present article is that by using the
IMC structure, sampled-dataH∞ filters can be applied to
effectively solve the three problem listed above simultane-
ously. This filter was first proposed in [19], and since then
a number of works have appeared on various digital signal
processing problems, such as sampling rate converters [20],
[21], optimal wavelet expansion [22], fractional delay filters
[23], JPEG noise reduction [24] and∆Σ converters [25]. See
also a survey paper [26].

The sampled-dataH∞ filter is a digital one, which is
designed to approximate the time delaye−Ls with respect to
the H∞ norm of the sampled-data error system. It is noted
[26] that the conventional Shannon reconstruction causes

1Perfect tracking means that the steady-state tracking error is zero.
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Fig. 1. Control System:K can be a continuous-time or a sampled-
data repetitive controller,Pc is a stable plant which can have unmodeled
dynamics.

high-frequency noise due to the Gibbs phenomenon. This
is because the conventional filter is designed toperfectly
reconstruct the original signal within the Nyquist frequency.
This is the same phenomenon as one in digital repetitive
control. That is, the intersample ripples in digital repetitive
control can be interpreted as the Gibbs phenomenon caused
by perfectly tracking to the reference signal on the sampling
instants. In view of this, the sampled-dataH∞ filter can also
be very effective in digital repetitive control.

The organization of this article is as follows. In Section II,
we formulate the problem of repetitive controller design. We
adopt the IMC structure for repetitive control in continuous-
time domain in Section III. Based on the discussion there,
we introduce in Section IV the sampled-dataH∞ filter in
repetitive control. Section V illustrates a design exampleto
show effectiveness of our method. Section VI concludes this
article.

A. Notations

R : the real numbers.
R+ : the positive real numbers.
C : the complex numbers.
C+ : the complex numberss which satisfies Re[s] > 0.
jR : the imaginary numbers.
H∞ : the bounded analytic functions inC+.
RH∞ : the bounded rational functions inC+.
RL∞ : the bounded rational functions onjR.
L2 : the square integrable functions onR+.
B(L2) : the linear bounded operators inL2.
Sh : the ideal sampler with periodh.
Hh : the zero-order hold with periodh.

II. REPETITIVE CONTROL PROBLEM

We here formulate repetitive control problem. First of all,
let us see the control system shown in Fig. 1. In this figure,
Pc is a plant to be controlled. Throughout this paper, we
assume that the plantPc is stable, or already stabilized
by another controller. The plant can be perturbed due to
uncertainty in modeling. The controllerK we design is a
continuous-time or a sampled-data system. In both cases,
the controller should be achieve

• (robust) stability,
• and tracking referencer of periodL.

As mentioned above, if the relative degree ofPc is not
zero, perfect tracking and stability never go together. Thus,
we relax the strict requirement of tracking. Our problem is
formulated as follows.
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Fig. 2. Internal Model Control:Pc is a stable continuous-time plant and
Pc is a model ofPc. Kc is a continuous-time stable controller.

Problem 1: Find a stabilizing controllerK such that the
sensitivity functionS = (I +PcK)−1 is sufficiently small at
frequencies

ωn :=
2πn

L
, n = 0, 1, 2, . . . , N

whereN is a given positive integer.
This is the main idea of modified repetitive control. We

however do not adopt the structure of (1), but introduce the
internal model control.

III. R EPETITIVE CONTROL BY INTERNAL MODEL

CONTROL

A. Sensitivity optimization

Internal model control (IMC) is a powerful method to
control a plant which is difficult to control due to delays,
nonlinearities, etc. The IMC structure is shown in Fig. 2. In
this figure,Pc is a continuous-time plant andPc ∈ RH∞ is
a model ofPc.

At first, assume thatPc = Pc (i.e., there is no model
error). Then, by the theory of Youla parameterization [27],
[28], the feedback system is internally stable if and only if
the controllerKc is in H∞. If Kc ∈ H∞, the sensitivity
function is given by

Sc(s) = 1 − Pc(s)Kc(s).

To solve our problem (Problem 1), we employ a weighting
function Wc ∈ RH∞ which is a lowpass filter2 with cutoff
frequencyωc > ωN = 2πNL−1 for given positive integer
N . By this weighting function, we optimize the following
objective function.

Jc(Kc) = ‖(e−Ls − PcKc)Wc‖∞, Kc ∈ H∞. (2)

Roughly speaking, if this is sufficiently small, then we have

Pc(jωn)Kc(jωn) ≈ ejωnL = 1, n = 1, 2, . . . , N

and hence the sensitivity functionSc(s) will be sufficiently
small at{jωn}n=1,2,...,N .

The optimal controllerKc minimizes theH∞ norm of
the error system shown in Fig. 3. This is a standard one-
block H∞ control problem [27], [28]. In fact, we have the
following lemma.

2We choose a lowpassWc because we want to better track signals at low
frequenciesω1, . . . , ωN .
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Fig. 3. Error system for approximation ofe−Ls.

Lemma 1:AssumePc has no zeros onjR and let

γopt := inf
Kc∈H∞

Jc(Kc).

Then for anyε > 0, there existsKε ∈ H∞ such that

Jc(Kε) < γopt + ε.

Moreover, the sub optimal filterKε is decomposed as

Kε = K1 + K2

whereK1 ∈ RH∞ andK2 ∈ H∞.
The proof is given in the appendix.

B. Robust stability conditions

We here consider uncertainty in the plantPc. Let

∆c := {∆c ∈ H∞ : ‖∆c‖∞ ≤ 1}.

Then we have the following lemma.
Lemma 2:AssumeKc ∈ H∞.

1) Assume the plant has multiplicative perturbations, that
is,

Pc = Pc(1 + ∆cWm), ∆c ∈ ∆c

whereWm ∈ H∞ is a weighting function. Then the
control system shown in Fig. 2 is internally stable for
all ∆c ∈ ∆c if

‖PcKcWm‖∞ < 1.

2) Assume the plant has additive perturbations, that is,

Pc = Pc + ∆cWa, ∆c ∈ ∆c

where Wa ∈ H∞ is a weighting function. Then the
control system shown in Fig. 2 is internally stable for
all ∆c ∈ ∆c if

‖KcWa‖∞ < 1.

The proof is straightforward by using the small gain theorem
[27].

The controller given in this section is the (sub) optimal
solution for the repetitive control with an IMC structure
shown in Fig. 2. It however includes the infinite-dimensional
K2 ∈ H∞ and is difficult to implement. In the next section,
we solve this problem by using sampled-dataH∞ filters.
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Fig. 4. Digital Repetitive Controller.
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Fig. 5. Sampled-data repetitive control system with IMC structure.

IV. IMC R EPETITIVE CONTROL BY SAMPLED-DATA H∞

FILTERS

A. Sensitivity optimization

The basic digital repetitive controller is shown in Fig.
4. This is an approximation of the continuous-repetitive
controller Qc(s) = e−mhs(1 − e−mhs)−1 assuming thatm
is a positive integer satisfyingL = mh. By the equation
ShHh = I (identity) [11], the digital repetitive controller is
given byHhQdSh whereQd(z) = z−m(1 − z−m)−1. This
Qd is the signal generator for arbitrary discrete-time periodic
signals of periodm. By the discrete-time version of internal
model principle, the repetitive control system withQd can
perfectly track arbitrarym-periodic references. As mentioned
in the introduction, this system can lead to intersample
ripples. We here propose an alternative toQd via IMC and
sampled-dataH∞ filters. The proposed repetitive control
system is shown in Fig. 5 (cf. Fig. 2). In this figure,Fc

is a strictly properRH∞ function. ThisFc is usually called
anti-aliasing filter. This however is not necessarily required
to have cutoff frequency within the Nyquist frequencyπh−1.
This is introduced to make the feedback system beL2-
bounded. See [11]. The sampled-dataH∞ optimal filter is
an approximation of the continuous-time delaye−Ls taking
account of intersample errors by using sampled-dataH∞

control theory. This fact can be used in our IMC repetitive
control.

Assume thatPc = Pc, and the sampling frequency
2πh−1 is non-pathological [11]. Then, by using the Youla
parameterization, the feedback system is stable if and only
if the digital controllerKd is stable. If Kd is stable, the
sensitivity function is given by

Ssd = I − PcHhKdShFc.

To solve our problem, we use the same weighting function
Wc as one in the previous section. By this weighting func-
tion, we optimize the following objective function.

Jsd(Kd) = ‖(e−mhs − PcHhKdShFc)Wc‖∞ (3)

where the norm is theL2-induced norm of the sampled-
data error system which is equivalent to theH∞ norm of
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Fig. 6. Error system for approximation ofe−mhs wherem is a positive
integer.

the lifted system [11]. Throughout this section, the norm
‖·‖∞ denotes theL2-induced norm. The corresponding error
system is shown in Fig. 6 (cf. Fig. 3). The optimal filter,
called sampled-dataH∞ filter, can be obtained numerically
via lifting method [29] or fast-discretization [19], [30].

B. Robust stability conditions

We here consider uncertainty in the plantPc. Let

∆c := {∆c ∈ B(L2) : ‖∆c‖∞ ≤ 1},

whereB(L2) is the set of the linear bounded operators in
L2. We have the following lemma [11].

Lemma 3:AssumeKd is stable.

1) Assume the plant has multiplicative perturbations, that
is,

Pc = Pc(1 + ∆cWm), ∆c ∈ ∆c,

whereWm ∈ RH∞ is a weighting function. Then the
control system shown in Fig. 5 is internally stable for
all ∆c ∈ ∆c if

‖PcHhKdShFcWm‖∞ < 1.

2) Assume the plant has additive perturbations, that is,

Pc = Pc + ∆cWa, ∆c ∈ ∆c,

whereWa ∈ RH∞ is a weighting function. Then the
control system shown in Fig. 5 is internally stable for
all ∆c ∈ ∆c if

‖HhKdShFcWa‖∞ < 1.

C. Implementation

Our sampled-data controller in Fig. 5 includes both a
discrete-time controllerKd and a continuous-time plant
modelPc. To implement this in a digital device, weequiv-
alently transform the sampled-data system into a discrete-
time system. To do this, we introduce the step-invariant
transformation [11],

Pd = ShFcPcHh.

This system is a linear time-invariant discrete-time system,
by which our controller is transformed into

K = Hh

(
Kd

1 − PdKd

)

ShFc

This controller is illustrated in Fig. 7.

Sh Kd Hh

Pd

+
Fc

Fig. 7. Digital implementation of sampled-data repetitivecontroller:Pd is
the step-invariant discretization ofPc.
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Fig. 8. Multirate repetitive controller with upsampler↑M .

D. Multirate control

It is pointed out in [10] that in digital repetitive control
systems, the period of the hold device can shorter than that
of the sampler. Considering this advantage, we can adopt a
multirate controller shown in Fig. 8. instead of the controller
in Fig. 5 In this system,↑M is the upsampler defined by

↑M : {x[k]}∞k=0 7→ {x[0], 0, . . . , 0
︸ ︷︷ ︸

M−1

, x[1], 0, . . .}.

The controllerKmr is designed to optimize the following
objective function

Jmr(Kmr) = ‖{e−mhs − Hh/MKmr(↑M)ShFc}Wc‖∞ (4)

By using discrete-time lifting [11], this can be solved nu-
merically, see [21]. Digital implementation as shown in Fig.
7 is also obtained by discrete-time lifting.

V. DESIGN EXAMPLE

In this section, we show a design example. The nominal
plant Pc here is

Pc(s) =
s − 1

(s + 2)(s + 3)(s + 4)(s + 5)
.

The periodL of reference signals isL = 10. The sampling
period ish = 1. The weighting function is a lowpass filter
with cutoff frequencyωc = π/20 = 0.157, that is,

Wc(s) =
π

20s + π
.

The lowpass filterFc is chosen as

Fc(s) =
1

Ts + 1
, T = 1/100.

The parameterTε to design continuous-controllerKc (see
the appendix) is the same asT . With these parameters, we
design three controllers; the continuous-timeH∞ optimal
Kc minimizing (2), the sampled-dataH∞ optimalKd mini-
mizing (3), and the multirate controllerKmr minimizing (4).
Fig. 9 shows these controllers. In this figure, the inverse of
Pc is also plotted. The continuous-time controller mimics
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Fig. 9. Controllers; continuous-timeH∞ sub-optimalKc (dash), the
inverse ofPc (dash-dots), sampled-dataH∞ filter Kd (dots), and multirate
sampled-dataH∞ filter Kmr (solid).
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Fig. 10. Output of sampled-dataH∞ optimal repetitive control system;
delayed reference (dash) and outputy under plant perturbation.

the gain ofP−1
c very well. The two vertical lines show the

Nyquist frequenciesπ (for Kd) and4π (for Kmr). By using
the sampled-dataH∞ optimalKd, we simulate the repetitive
control for a triangle input of periodL = 10. We assume the
plant has a multiplicative perturbation

Pc(s) = Pc(s) (1 + ∆c(s)) , ∆c(s) =
s − 0.5

s + 1
.

Under this perturbation, the output is shown in Fig. 10. In
the first few steps, the output shows over-shoots, then it
converges the input (note that the input shown is delayed by
one step). To see the error precisely, we show the error in Fig.
11. We also show the error when there is no perturbation.
Since we did not consider the robust performance, the
error with perturbation is much larger than that without
perturbation.
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Fig. 11. Tracking Error; with no perturbation (solid) and perturbed (dash).

VI. CONCLUSION

In this article, we have proposed a novel repetitive control
by and sampled-dataH∞ filters. The controller has the IMC
structure and the controller optimizes the sensitivity function.
A numerical example shows the effectiveness of our method.
It is an easy extension to robust controller design.
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APPENDIX

PROOF OFLEMMA 1

Let (m, g) be an inner-outer factorization ofPcWc ∈
RH∞, that is,

Pc(s)Wc(s) = m(s)g(s),

where m is inner andg is outer. Then by the method of
absorption of the outer factor [31], the optimal valueγopt is
reduced to

γopt = inf
Q∈H∞

‖e−Lsm∼Wc − Q‖∞, (5)

where m∼(s) = m(−s). Let {A, B, C} be a minimal
realization ofm∼(s)Wc(s). Then we have

e−Lsm∼(s)Wc(s) = Φ(s) + Ψ(s)

where

Φ(s) := C(e−LsI − e−LA)(sI − A)−1B,

Ψ(s) := Ce−LA(sI − A)−1B.

SinceΦ is an FIR (finite-impulse-response) system [32] (i.e.,
Φ ∈ H∞) andΨ is a rational function, we have

γopt = inf
Q1∈RH∞

‖Ψ − Q1‖∞. (6)

By Nehari theorem [27], this valueγopt is equal to the Hankel
norm of Ψ, and letQ1,opt ∈ RH∞ be the optimalQ in (6)
and let

Qopt(s) := Q1,opt(s) + Φ(s).

This Qopt is in H∞ and is the optimalQ of (5). Let ν be
the relative degree of the outer functiong(s). SinceWc is
strictly proper ande−Ls is inner, for anyε > 0, there exists
Tε > 0 such that

Jc(Kε) = ‖e−LsWc − mgKε‖ < γopt + ε,

where

Kε(s) :=
Qopt(s)

g(s)(Tεs + 1)ν
= K1(s) + K2(s),

K1(s) =
Q1,opt(s)

g(s)(Tεs + 1)ν
∈ RH∞,

K2(s) =
Φ(s)

g(s)(Tεs + 1)ν
∈ H∞.
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