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Abstract— A new paradigm of digital signal processing has of the delaye="*, which is difficult to implement in an
recently been proposed in view of sampled-data control they.  analog device. To this problem, controller discretizaf®an
This filter, called sampled-data /™ filter, approximates a  effective solution. In this approach, the delay’* is con-
linear phase characteristic in continuous-time domain, tlat is, . —m
a pure delay. By this property, we propose a new repetitive ventionally replaced by a sampled-data systlmz~"Sy,
controller including the sampled-data H>° optimal filter. More- ~ WhereH,, andS;, are respectively the zero-order hold and
over, to achieve the stability, we introduce the Internal Malel  the ideal sampler with sampling periagandm is a positive

Control (IMC). Our method solves the problem of stability, integer satisfyingl = mh. This leads to digital repetitive

implementability, and inter sample ripples in digital repetitive control [8] with repetitive controller
control. A numerical example shows the effectiveness of our

method. y—m

Qa(z) =

. INTRODUCTION L=z

- . . This is the signal generator for arbitradyscrete-timeperi-
el sonoh s cont) schere o be desoned G signals of an ieger per, by whch the conrol
disturbances [1]. This method was first introduced in thsystem can achieve perfect trackirfgr the periodic signals

. Bn the sampling instants.
control of magnetic power supply for proton synchrotron [2] However. it has another problem: intersample rioples. A
Since then, a number of theoretical and industrial studies ' P ' p'e Tippies.

h b d it trol 3 rimedy for this is to adopt a generalized hold [9] or a multi-
ave been made on repetilive control, see Surveys [31, [f} te control [10]. On the other hand, the intersample betmavi
and references in there.

. . L .. in digital repetitive control can be taken into account b
In view of the internal model principle [5], [6], repetitive 9 b y

rol A + include th odic sianal ¢ modernsampled-data control theorjd 1], [12]. There have
controf system must include the periodic signal generator poa,y several works on sampled-data repetitive control, see

e Ls [13], [14], [15], [16], [17].
Qo(s) = 1_eoLs Motivated by these works, we propose a novel repetitive

in the feedback loop. This enables us to tramiitrary control which solves the three problems mentioned above;

periodic references of periotl with zero steady-state error. *® §tab|I|ty, -
There however arise two problems; stability and imple- ¢ implementability,
mentability. « and intersample ripples.

The stability problem is due to the fact that the repetitivé-or the stability problem, we introduce the internal model
control system is a neutral delay-differential system. Big t control (IMC) [18], instead of the modified repetitive capitr
nature, the control system cannot be exponentially stablde principle of IMC is in incorporating the model in the
if the transfer function of the plant is strictly proper [1], controller to handle the intrinsic difficulty in the plant |
[6]. To remedy this, modified repetitive control [7], [1] wasOur case, the plant may be strictly proper and non-minimum
proposed, in which the repetitive controll@g(s) is replaced phase (i.e., difficult to control), and hence we place theehod

by into our repetitive controller.
mod Fy(s)e ks The main idea of the present article is that by using the
c (5)= 1— Fy(s)e Ls @ mc structure, sampled-datél*° filters can be applied to

_ ) ) effectively solve the three problem listed above simultane
where F¢(s) is a lowpass filter with a cutoff frequencye.  oygly. This filter was first proposed in [19], and since then
Th_|s repetitive control enables us to exponentlally. stadil 5 number of works have appeared on various digital signal
strictly proper plants, and to well track reference sign@s processing problems, such as sampling rate converters [20]
to the cutoff frequencyve. [21], optimal wavelet expansion [22], fractional delaydik

The modified repetitive control is a good scheme fo[33] JPEG noise reduction [24] ami converters [25]. See
general plants, there however remains the second problegjs, 5 survey paper [26].

implementability. This is due to the infinite dimensionglit e sampled-datdZ> filter is a digital one, which is

The authors are with Graduate School of Informatics, Kyotuversity, deSigned to approximate the time dews with respe_Ct to
Kyoto 606-8501, Japan the H>° norm of the sampled-data error system. It is noted

'nagahar a@ eee. or g [26] that the conventional Shannon reconstruction causes
2ogura@cs.i.kyoto-u.ac.jp
3yy@ . kyoto-u.ac.jp Iperfect tracking means that the steady-state tracking &rzero.
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Fig. 1.  Control System/X can be a continuous-time or a sampled-
data repetitive controllerP; is a stable plant which can have unmodeled
dynamics.

Fig. 2. Internal Model ControlP; is a stable continuous-time plant and
) ) ) Pe is a model ofP.. K¢ is a continuous-time stable controller.
high-frequency noise due to the Gibbs phenomenon. This

is because the conventional filter is designedptfectly
reconstruct the original signal within the Nyquist freqagn Problem 1: Find a stabilizing controlleiC such that the
This is the same phenomenon as one in digital repetitiwensitivity functionS = (I + P.K) ! is sufficiently small at
control. That is, the intersample ripples in digital repedi  frequencies
control can be interpreted as the Gibbs phenomenon caused

. . . 2
by perfectly tracking to the reference signal on the sangplin W = %, n=20,1,2,...,N
instants. In view of this, the sampled-dd{&° filter can also _ . o
be very effective in digital repetitive control. where N is a given positive integer.

The organization of this article is as follows. In Section Il This is the main idea of modified repetitive control. We
we formulate the problem of repetitive controller desigre Whowever do not adopt the structure of (1), but introduce the
adopt the IMC structure for repetitive control in contingeu internal model control.
time domain in Section 1ll. Based on the discussion there,
we introduce in Section IV the sampled-dat&™ filter in
repetitive control. Section V illustrates a design exantple
show effectiveness of our method. Section VI concludes thig. Sensitivity optimization

IIl. REPETITIVE CONTROL BY INTERNAL MODEL
CONTROL

article. Internal model control (IMC) is a powerful method to
A. Notations cont_rol a.plant which is difficult to cqntrol due_ to Qelays,
nonlinearities, etc. The IMC structure is shown in Fig. 2. In
R : the real numbers. this figure,P; is a continuous-time plant ant, € RH™ is
R, :the positive real numbers. a model ofP,.
C : the complex numbers. At first, assume tha’, = P. (i.e., there is no model
Cy  :the complex numbers which satisfies Rg] > 0. error). Then, by the theory of Youla parameterization [27],
jR :the imaginary numbers. [28], the feedback system is internally stable if and only if
H® :the bounded analytic functions i@, . the controllerK, is in H®. If K. € H®, the sensitivity
RH® : the bounded rational functions i, . function is given by
RL™ : the bounded rational functions gR.
L?  :the square integrable functions &, . Se(s) =1 — Pe(s)Kc(s).
B(L?) : the linear bounded operators Ir¥. I
S, :the ideal sampler with period. To solve our problem (Problem 1), we employ a weighting

function W, € RH> which is a lowpass filtérwith cutoff
frequencyw, > wy = 27 NL~! for given positive integer
N. By this weighting function, we optimize the following
objective function.

We here formulate repetitive control problem. First of all,
let us see the control system shown in Fig. 1. In this figure,  Je(Kc) = [[(e7"° = PKc)Weloo, Ke€ H™.  (2)
P is a plant to be controlled. Throughout this paper, w
assume that the plar®; is stable, or already stabilized
by another controller. The plant can be perturbed due to  p,(juw,)Kc(jwn) ~ e“F =1, n=1,2,...,N
uncertainty in modeling. The controllé€ we design is a
continuous-time or a sampled-data system. In both cases)d hence the sensitivity functiosi(s) will be sufficiently
the controller should be achieve small at{jwn }n=1,2,.. N

« (robust) stability, The optimal controller]_(c m.inimizes_thleH00 norm of

« and tracking reference of period L. the error system shown in Fig. 3. This is a standard one-

As mentioned above, if the relative degree Bf is not block 7 control problem [27], 28]. In fact, we have the

X o following lemma.
zero, perfect tracking and stability never go together.sThu g

we relax the strict requirement of tracking. Our problem is 2y choose a lowpadd/c because we want to better track signals at low
formulated as follows. frequenciesvs, . .., wy.

H; :the zero-order hold with perio4.

Il. REPETITIVE CONTROL PROBLEM

PRougth speaking, if this is sufficiently small, then we have
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K: > P Fig. 4. Digital Repetitive Controller.
. . r F. > Sy, |= Kq | > H P 12
Fig. 3. Error system for approximation ef s, i) g c h d h c
Lemma 1:AssumeP; has no zeros ofiR and let Pe

Yopt 1= Kcienlgoo Je(Ke).

. Fig. 5. Sampled-data repetitive control system with IMQisture.
Then for anye > 0, there existsk. € H*> such that 9 P P y

Jo(Ke) < opt + e IV. IMC REPETITIVE CONTROL BY SAMPLED-DATA H*®

Moreover, the sub optimal filteK. is decomposed as FILTERS
A. Sensitivity optimization

Ke= K1+ K The basic digital repetitive controller is shown in Fig.

oo oo 4. This is an approximation of the continuous-repetitive
where K, € RH™ and K € H™. controller Q¢(s) = e~™"3(1 — e~™"%)~1 assuming thain
is a positive integer satisfyind. = mh. By the equation
S;H; = I (identity) [11], the digital repetitive controller is
given by H,Q4S;, whereQq(z) = z=™(1 — z=™)~1. This

The proof is given in the appendix.

B. Robust stability conditions

We here consider uncertainty in the plant Let Qq is the signal generator for arbitrary discrete-time pedod
signals of periodn. By the discrete-time version of internal
Aci={Ac € H* : |[Aclloo < 1} model principle, the repetitive control system wifly can

perfectly track arbitraryn-periodic references. As mentioned
in the introduction, this system can lead to intersample
ripples. We here propose an alternativelg via IMC and
1) Assume the plant has multiplicative perturbations, thatampled-dataH > filters. The proposed repetitive control
is, system is shown in Fig. 5 (cf. Fig. 2). In this figuré;
Pe= Po(1+ AcW), Ac€ Ag is a strictly properRH > function. ThisFz is usually called
anti-aliasing filter. This however is not necessarily regdi

where Wy, € H* is a weighting function. Then the to have cutoff frequency within the Nyquist frequendy .

control system shown in Fig. 2 is internally stable forThis is introduced to make the feedback system Ilfe

all Ac e A if bounded. See [11]. The sampled-d&f&° optimal filter is

an approximation of the continuous-time delay”* taking
|PeKcWhlloo < 1. account of intersample errors by using sampled-ddta
control theory. This fact can be used in our IMC repetitive
2) Assume the plant has additive perturbations, that is, control.

Assume thatP, = P., and the sampling frequency
27h~! is non-pathological [11]. Then, by using the Youla
parameterization, the feedback system is stable if and only
IJf the digital controller Ky is stable. If Ky is stable, the

Then we have the following lemma.
Lemma 2:AssumeK, € H®°.

Pe=F.+ AcVVa, Ac € Ac

where W, € H> is a weighting function. Then the
control system shown in Fig. 2 is internally stable fo

all Ac e A fif sensitivity function is given by
c c
Ssa = I — PE-Hy K¢Sh Fe.
| KWalloo < 1. sd cHp KaSp Fe o |
The proof is straightforward by using the small gain theorenho solve our problem, we use the same weighting function
[27]. W, as one in the previous section. By this weighting func-

The controller given in this section is the (sub) optimafion, we optimize the following objective function.
solution for the repetitive control with an IMC structure —mhs
A . . ) Jsd(Kq) = ||(e — P-H, K¢S Fo)Wel oo 3
shown in Fig. 2. It however includes the infinite-dimensiona sa(Ka) = I( oH ) KaSn Fo) ol )
K, € H* and is difficult to implement. In the next section,where the norm is thd.?-induced norm of the sampled-
we solve this problem by using sampled-dai&° filters. data error system which is equivalent to the&° norm of
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Fig. 7. Digital implementation of sampled-data repetitoantroller: Py is

Fig. 6. Error system for approximation ef s wherem is a positive the step-invariant discretization ét.

integer.

Fe > Sy

Y

TM |- > Knr |- >Hpn/m

the lifted system [11]. Throughout this section, the norm
|| ||o denotes the.?-induced norm. The corresponding error P
system is shown in Fig. 6 (cf. Fig. 3). The optimal filter, ¢
called sampled-dat&/ > filter, can be obtained numerically
via lifting method [29] or fast-discretization [19], [30]. Fig. 8. Multirate repetitive controller with upsamplen\/.

B. Robust stability conditions
We here consider uncertainty in the plapt Let D. Multirate control

Ac:={Ac € B(L?) : |Adflo < 11, It is pointed Ol_,lt in [10] that in d|g|tal repetitive control
systems, the period of the hold device can shorter than that
where B(L?) is the set of the linear bounded operators irof the sampler. Considering this advantage, we can adopt a

L?. We have the following lemma [11]. multirate controller shown in Fig. 8. instead of the coreol
Lemma 3:AssumeKy is stable. in Fig. 5 In this system] M is the upsampler defined by
1) i,i\ssume the plant has multiplicative perturbations, that 1M : {2k} v {2]0],0,...,0,2[1],0,...}.

Pe = Po(1+ AWm), Ac€ A, M=t

) o ) The controller K, is designed to optimize the following
whereWy, € RH® is a weighting function. Then the objective function

control system shown in Fig. 5 is internally stable for
all Ac (S Ac if er(Kmr) = ||{e_mhs - Hh/MKmr(TM)ShFC}Wc”oo (4)

| P-H, K4Sh FeWanlloo < 1. By using discrete-time lifting [11], this can be solved nu-
N ) ~ merically, see [21]. Digital implementation as shown in.Fig
2) Assume the plant has additive perturbations, that is, 7 js also obtained by discrete-time lifting.

Pe=FP+ AWy Ac€ A, V. DESIGN EXAMPLE

whereW, € RH® is a weighting function. Then the In this section, we show a design example. The nominal
control system shown in Fig. 5 is internally stable forplant I here is

all Ac € Acif s—1
PC(S) = .
| H, KSh FeWal|oo < 1. (s+2)(s +3)(s +4)(s+5)
. The periodL of reference signals i& = 10. The sampling
C. Implementation period ish = 1. The weighting function is a lowpass filter
Our sampled-data controller in Fig. 5 includes both avith cutoff frequencyw. = 7/20 = 0.157, that is,

discrete-time controllerKy and a continuous-time plant T
model P.. To implement this in a digital device, wequiv- We(s) = 205 -7

alently transform the sampled-data system into a discrete-h | filtetF is ch
time system. To do this, we introduce the step-invarian-'f e lowpass filterf Is chosen as
transformation [11] 1
’ F =—_——, T =1/100.
{5) = oy /
The parametefl. to design continuous-controllek. (see
This system is a linear time-invariant discrete-time gyste the appendix) is the same @5 With these parameters, we

Pd - ShFCPCHh

by which our controller is transformed into design three controllers; the continuous-tifi€°® optimal
K K. minimizing (2), the sampled-datd > optimal Ky mini-
K =H, <ﬁ) SyFE¢ mizing (3), and the multirate controllét,, minimizing (4).

— Fakyq

Fig. 9 shows these controllers. In this figure, the inverse of
This controller is illustrated in Fig. 7. P, is also plotted. The continuous-time controller mimics
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Fig. 9. Controllers; continuous-timéf>° sub-optimal K¢ (dash), the
inverse of P; (dash-dots), sampled-datéa>° filter Ky (dots), and multirate
sampled-dataH > filter Kmr (solid).
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Fig. 11. Tracking Error; with no perturbation (solid) andtpebed (dash).

VI. CONCLUSION

In this article, we have proposed a novel repetitive control
by and sampled-datH *° filters. The controller has the IMC
structure and the controller optimizes the sensitivitychion.

A numerical example shows the effectiveness of our method.
It is an easy extension to robust controller design.
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Fig. 10. Output of sampled-datd>° optimal repetitive control system;
delayed reference (dash) and outgutinder plant perturbation.

(5]

the gain of P! very well. The two vertical lines show the el

Nyquist frequencies (for K4) and4r (for Kpy). By using
the sampled-daté/ >° optimal K4, we simulate the repetitive
control for a triangle input of period = 10. We assume the
plant has a multiplicative perturbation

(7]

(8]
s—0.5

s+1°

Pe(s) = Fe(s) (1 + Ac(s) s Ac(s) = -
Under this perturbation, the output is shown in Fig. 10. In
the first few steps, the output shows over-shoots, then [ito]
converges the input (note that the input shown is delayed t@/l]
one step). To see the error precisely, we show the error in Fi
11. We also show the error when there is no perturbatiofi2]
Since we did not consider the robust performance, the
error with perturbation is much larger than that without,

perturbation.
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APPENDIX
PROOF OFLEMMA 1

Let (m,g) be an inner-outer factorization aPcWW, €
RH®™, that is,

Fe(s)We(s) = m(s)g(s),

wherem is inner andg is outer. Then by the method of
absorption of the outer factor [31], the optimal vahug; is
reduced to

o= it e Em W - Qloe, ()

where m™~(s) = m(—s). Let {A,B,C} be a minimal
realization ofm™(s)We(s). Then we have

e Lo m™ (5)We(s) = ®(s) + U(s)

where

B(s) := Cle LT —e LAY (sI — A)7'B,
U(s):=Ce EA(sI — A)7B.



