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Abstract—In remote control systems, efficient representation of
control signals is one of the crucial issues because of bandwidth
limitation of the communication channel, such as a wireless
communication link between the controller and the controlled
object. Recently, a new method based on the technique of
compressive sampling has been proposed, in which control
signals are sparsely representation based on convex relaxation.
There exist however so many sparsity-promoting methods for
compressive sampling. In this study, we perform a comparative
study of sparsity-promoting methods and reveal their advantages
and disadvantages by simulation in view of remote control over
rate-limited networks.

Index Terms—remote control, networked control, compressive
sampling, compressed sensing, sparse representation

I. INTRODUCTION

In remote control [1], the controlled objects are located
away from controllers, and control signals are to be transmitted
through rate-limited channels such as wireless channels [2] or
the Internet [3]. To send control signals through such commu-
nication channels, efficient signal compression or representa-
tion is essential. For this, an approach has been proposed in
[4], [5] for sparsifying control signals using the compressive
sampling technique [6], [7], [8] for remote control systems.

The aim of compressive sampling (aka compressed sens-
ing) is to reconstruct signals from much less information by
assuming that the original signal is sparse [9], [10], [11]. The
core idea used in this area is to introduce a sparsity index in
the optimization. To be more specific, the sparsity index of
a vector v is defined by the amount of nonzero elements in
v and is usually denoted by ∥v∥0, called the “ℓ0 norm.” The
compressed sensing problem is then formulated by ℓ0-norm
optimization. By ℓ0-norm optimization, one obtain a sparse
vector contains many 0-valued elements, and can be highly
compressed by only coding a few nonzeros and their locations.
A well-known example of this sparsity-inducing compression
is JPEG [12].

The associated optimization problem is however hard to
solve, since it is a combinatorial one [13]. One approach to
the combinatorial optimization is an iterative greedy algorithm
called Orthogonal Matching Pursuit (OMP) [14] and its ex-
tension, Compressive Sampling Matching Pursuit (CoSaMP)
[15]. Another tractable approach for ℓ0-optimization is convex
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relaxation to use the ℓ1 norm instead of the highly nonconvex
ℓ0 norm. This is called Basis Pursuit Denoising (BPDN) in
signal processing, and can be also effectively solved via fast
algorithms such as NESTA (Nestrov’s Algorithm) based on
Nesterov’s method. [19], and FISTA (Fast IST Algorithm) [16]
based on iterative shrinkage-thresholding [17], [18].

In this study, we perform a comparative study of the
algorithms, OMP, CoSaMP, NESTA, and FISTA, for remote
control systems. We reveal their advantages and disadvantages
by simulation in view of remote control over rate-limited
networks.

Notation
For vector v = [v1, . . . , vn]

⊤ ∈ Rn, the ℓ1 and ℓ2 norms
are respectively defined by

∥v∥1 :=
n∑

i=1

|vi|, ∥v∥2 :=

(
n∑

i=1

v2i

)1/2

.

The set of indices of nonzero elements in v is denoted by
supp(v) := {j : vj ̸= 0}, and the “ℓ0” norm is defined
by ∥v∥0 := |supp(v)|, where |supp(v)| is the number of
members in the set supp(v). For a matrix Φ, its norm is
defined by

∥Φ∥ := max
∥v∥2 ̸=0

∥Φv∥2
∥v∥2

= σmax(Φ),

where σmax(Φ) is the maximum singular value of Φ. We
denote by L2[0, T ] the set of all square integrable functions
on [0, T ] (T > 0) , endowed with the inner product

⟨f, g⟩ :=
∫ T

0

f(t)g(t)dt, f, g ∈ L2[0, T ]

and the L2 norm ∥f∥2 := ⟨f, f⟩1/2.

II. CONTROL PROBLEM

A. Plant model
In this study, we consider a control problem of a linear

system P on a finite time interval (or horizon) [0, T ], modeled
by the following state-space equations:

P :

{
ẋ(t) = Ax(t) + bu(t),

y(t) = c⊤x(t), x(0) = x0 ∈ Rν , t ∈ [0, T ],
(1)

where A ∈ Rν×ν and b, c ∈ Rν×1. The initial state x0 ∈ Rν

is assumed to be given. We also assume that the system is
stable.
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Fig. 1. Remote control system

B. Tracking problem
For the system (1), we here consider the tracking problem;

given a reference signal r(t) over the time interval [0, T ] and
the state-space observation x(0) at the initial time t = 0, find
a control signal u(t) over [0, T ] that minimizes the tracking
error

E(u) := ∥y − r∥22 = ∥Pu− r∥22.

In addition, we assume remote control where the controller,
denoted by K, that generates the control signal is located away
from the controlled plant P . Fig. 1 shows a block diagram of
the remote control system where the dotted lines indicate rate-
limited networks such as wireless networks. In this system, the
control signal u(t) over [0, T ] should be represented in a finite
dimensional vector, denoted by θ, which is transmitted through
the rate-limited network. The received vector is transformed
to the control signal u(t), t ∈ [0, T ] by the decoder Ψ defined
by

u = Ψθ =
M∑

m=−M

θmψm,

where ψm is the m-th Fourier basis function on [0, T ], that is,

ψm(t) :=
1√
T

exp(jωmt), t ∈ [0, T ], ωm :=
2πm

T
.

Note that the control signal u is band-limited up to the
frequency ωM = 2πM/T . Let VM denote the set of such
signals, that is,

VM := span{ψm : m = −M, . . . ,M} ⊂ L2[0, T ].

Then we have u ∈ VM . We also assume that the reference
signal r is in VM .

Under the above assumptions, the output y(t) can be rewrit-
ten in terms of the Fourier coefficients θi as

y(t) = c⊤ exp(tA)x0 +
M∑

m=−M

θm⟨κ(t, ·), ψm⟩,

where

κ(t, τ) :=

{
c⊤ exp [(t− τ)A] b, if 0 ≤ τ < t ≤ T,

0, otherwise.

Sampling the continuous-time signal y(t) with sampling time
h := T/(N − 1), where N := 2M + 1, the dimension of the
signal subspace VM , we have

y(tn) = c⊤ exp(tnA)x0 +
M∑

m=−M

θm⟨ϕn, ψm⟩,

tn := (n− 1)h, ϕn := κ(tn, ·), n = 1, 2, . . . , N.

By this, the sampled tracking error

Ed(u) = h
N∑

n=1

|y(tn)− r(tn)|2

is rewritten as

Ed(θ) = h ∥Gθ −Hx0 − r∥22 ,

where

G :=


⟨ϕ1, ψ−M ⟩ . . . ⟨ϕ1, ψM ⟩
⟨ϕ2, ψ−M ⟩ . . . ⟨ϕ2, ψM ⟩

...
. . .

...
⟨ϕN , ψ−M ⟩ . . . ⟨ϕN , ψM ⟩

 ∈ CN×N , (2)

r :=


r(t1)
r(t2)

...
r(tN )

 ∈ RN , H :=


c⊤ exp (t1A)
c⊤ exp (t2A)

...
c⊤ exp (tNA)

 ∈ RN×ν .

C. Sparse control vector

Since the network is rate-limited, the vector θ should be
compressed (or represented) in as small data size as possible.
For this purpose, we have proposed in [4] to use the method
of compressive sampling.

Let U be a random “decimation” matrix of the form

U =


ei(1)
ei(2)

...
ei(K)

 ∈ {0, 1}K×N ,

where i(1) < i(2) < · · · < i(K) are the random variables of
the uniform distribution on {1, 2, . . . , N}, and

ei := [0, . . . , 0,

i
∨
1, 0, . . . , 0], i = 1, 2, . . . , N.

This is a model of low rate random sampling of a signal on
[0, T ]. We define the random sampling instants by

ti(k) = i(k) · h = i(k) · T

N − 1
, k = 1, 2, . . . ,K < N.

By using the matrix U , random sampling of y(t) on [0, T ] is
given by:

y =


y
(
ti(1)

)
y
(
ti(2)

)
...

y
(
ti(K)

)
 = UGθ + UHx0.

The associated optimization problem is formulated by

min
θ∈RN

∥θ∥0 subject to ∥Φθ −α∥22 ≤ ϵ, (3)

where Φ := UG and α = U(r − Hx0). The objective
here is to minimize ∥θ∥0 to obtain a sparse control vector
with an ℓ2 norm constraint for tracking performance. The
optimization (3) is a combinatorial one, which is hard to
solve in a reasonable computational time. For this, we adopt
computationally tractable algorithms in the next section.



Algorithm 1 OMP for sparse control vector θ
Require: α ∈ RK {observed vector}
Ensure: θ {sparse control vector}
θ[0] := 0, r[0] := α− Φθ[0], S[0] := supp{θ[0]} = ∅.
k := 0.
while ∥r[k]∥2 > ϵ do

for j = 1 to N do

zj :=
ϕ⊤

j r[k]

∥ϕj∥22
= argmin

z∈R
∥ϕjz − r[k]∥22.

ej := ∥ϕjzj − r[k]∥22.
end for
Find a minimizer j0 ̸∈ S[k] such that ej0 ≤ ej , for all
j ̸∈ S[k].
S[k + 1] := S[k] ∪ {j0}
θ[k + 1] := argmin

supp{θ}=S[k+1]

∥Φθ −α∥22.

r[k + 1] := α− Φθ[k + 1].
k := k + 1.

end while
return θ = θ[k].

III. SPARSITY-PROMOTING METHODS

There are many algorithms to obtain a numerical solution
of (3): greedy pursuit, bayesian framework, nonconvex opti-
mization, and brute force [20]. In this article, we adopt greedy
pursuit and convex optimization, in particular.

A. Greedy pursuit

Among many methods of greedy pursuit, the orthogonal
matching pursuit (OMP) [14] is the most popular. Algorithm
1 shows the algorithm of OMP. If the sparsity of the solu-
tion, ∥θ∥0 is previously known, then one can adopt a faster
method called CoSaMP (Compressive Sampling Matching
Pursuit) [15]. The CoSaMP algorithm takes advantage of
RIP (Restricted Isometry Property) of sparse signals. For the
algorithm, see [15].

B. Convex optimization

Another method to solve the optimization (3) is convex
relaxation. For the relaxation, we replace the term ∥θ∥0 by the
ℓ1 norm ∥θ∥1, and solve the following convex optimization:

min
θ∈RN

∥θ∥1 subject to ∥Φθ −α∥22 ≤ ϵ. (4)

The solution of this optimization can be obtained by a standard
method of convex programming, such as interior point method.
However, there exist much faster method called NESTA
(Nesterov’s Algorithm) [19]. The main idea of the NESTA
algorithm is to replace the non-smooth ∥θ∥1 term by a smooth
function called Huber’s function defined as

fδ(θ) =
N∑
i=1

|θi|δ, |θi|δ :=

{
1
2µθ

2
i , if |θi| < µ,

|θi| − µ
2 , otherwise.

Algorithm 2 NESTA for sparse control vector θ
Require: α ∈ RK {observed vector}
Ensure: θ {sparse control vector}
θ[0] := 0, w[0] := satδ(θ[0]), v[0] := 1

2w[0].
k := 1.
repeat
q[k] := θ[k]− δw[k].
λk := max

{
0, 1

δϵ∥α− Φq[k]∥2 − 1
δ

}
.

Solve the following linear equation for η[k]:

(I + δλkΦ
⊤Φ)η[k] = δλkΦ

⊤α+ q[k].

Solve the following linear equation for ζ[k]:

(I + δλkΦ
⊤Φ)ζ[k] = δλkΦ

⊤α+ θ[0] + q[k].

θ[k + 1] := 2
k+4ζ[k] +

k+2
k+4η[k].

w[k + 1] := satδ(θ[k + 1]).
v[k + 1] := 1

2k+4w[k + 1] + v[k].
k := k + 1.

until |fδ(θ[k−1])−fδ(θ[k−2])| ≤ EPS or k ≥ MAXITER.
return θ = θ[k − 1].

By using Huber’s function, the optimization (4) is approxi-
mated as

min
θ∈RN

fδ(θ) subject to ∥Φθ −α∥2 ≤ ϵ. (5)

Note that for any θ ∈ RN , fδ(θ) → ∥θ∥1 as δ → 0. Applying
the Nesterov’s method to the optimization problem (5), we
obtain the NESTA algorithm shown in Algorithm 2. In this
algorithm, satδ(θ) is a saturation function defined by

[satδ(θ)]i :=

{
1
µθi, if |θi| < µ,

sgn(θi), otherwise,

where [·]i is the i-th element of a vector, and

sgn(x) :=

{
1, if x ≥ 0,

−1, if x < 0.

Note that the function satδ(θ) is the gradient of fδ(θ), i.e.,

satδ(θ) = ∇fδ(θ).

It is known that the sequence {θ[0],θ[1], . . . } converges to the
solution of (5) for any initial vector θ[0] at the convergence
rate O(1/k2).

We can also adopt another method for the optimization (4)
by considering the following Lagrange form:

min
θ∈RN

F (θ) = min
θ

∥Φθ −α∥22 + µ∥θ∥1. (6)

For this optimization problem, FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) is known to be a fast
algorithm [16]. Algorithm 3 shows the FISTA algorithm. In
this algorithm, shrinkµ(θ) is a shrinkage function defined by

[shrinkµ(θ)]i := sgn(ηi)(|ηi| − λ/c)+,



Algorithm 3 FISTA for sparse control vector θ
Require: α ∈ RK {observed vector}
Ensure: θ {sparse control vector}
θ[0] := 0, θ̃[1] := 0, β[1] := 0.
k := 1.
repeat

θ[k] := shrinkµ
(
1
cΦ

⊤(α− Φθ̃[k]) + θ̃[k]
)
.

β[k + 1] := 1
2 +

√
1
4 + β[k]2.

θ̃[k + 1] := θ[k] + β[k]−1
β[k+1]

(
θ[k]− θ[k − 1]

)
.

k := k + 1.
until |F (θ[k−1])−F (θ[k−2])| ≤ EPS or k ≥ MAXITER.
return θ = θ[k − 1].

where (x)+ := max{x, 0} for x ∈ R. If the parameter c
is chosen such that c ≥ ∥Φ∥, the sequence {θ[0],θ[1], . . . }
converges the optimal solution of (6) for any initial vector
θ[0]. The convergence rate is known to be O(1/k2).

IV. SIMULATION RESULTS

We here perform a comparative study of existing methods
for the optimization (3) based on simulation. The state-space
matrices of the controlled plant P are given by

A =

[
0 1

−0.5 −1.5

]
, b =

[
0
1

]
, c =

[
−0.5
1

]
.

The transfer function of this system is given by

P (s) =
s− 0.5

(s+ 0.5)(s+ 1)
.

The period T is 2π. The number of basis {ψm} is N = 2M+
1 = 51 (M = 25). The reference signal r(t) is given by

r(t) = sin(5t) + cos(12.5t).

For compressive sampling, we take K = 51/3 = 17 random
samples among N = 51 sampled data, that is the compression
ratio is 1/3.

With these parameters, we run 100 simulations with ran-
domly generated initial state x0 and matrix U . We adopt
four existing methods: OMP, CoSaMP, NESTA, and FISTA
introduced in the previous section. Table I shows the av-
erage values of the control performance (or tracking error)
∥Φθ − α∥2, sparsity ∥θ∥0, computational (CPU) time (sec),
and the number of iterations. The result indicates that OMP
shows the best control performance and needs the fewest
iterations, while FISTA gives the sparsest control vector and
needs the shortest computational time. Note that NESTA gives
dense vectors since the algorithm uses Huber’s function fδ ,
which leads to vectors many elements of which are almost zero
(not exactly zero). To obtain a sparse vector with NESTA, one
needs truncation. FISTA is quite fast and leads to very sparse
vectors, but one should choose an appropriate parameter µ > 0
in the algorithm. This requires some trial-and-error process. As
a result, OMP is the best choice for the remote control system
in the simulation.

TABLE I
COMPARISON

method ∥Φθ −α∥2 ∥θ∥0 CPU time (sec) # of iteration
OMP 0.33068 6.66 0.026208 9.81

CoSaMP 1.454 5 0.056219 345.58
NESTA 0.62325 51 1.183 1000
FISTA 1.1084 3.79 0.0016118 17.59

V. CONCLUSION

In this article, we have shown a comparative study of
sparsity-promoting methods in remote control systems by
simulation. The simulation result shows OMP (orthogonal
matching pursuit) is the best for the remote control system
considered in the simulation. Since many other algorithms
have been also proposed for sparsity, it is important to seek
for more suitable algorithm for remote control systems.
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