
On the Computation of Value Sets of Multi-Liner Functions

Yuzo Ohta Masaaki Nagahara
Kobe University and Kyoto University

ohta@cs.kobe-u.ac.jp nagahara@i.kyoto-u.ac.jp

Abstract: In this paper, the issue of computing a good estimate of the value set of a characteristic polynomial f(s, q)
is addressed, where q denotes a vector of uncertain parameters belonging to a box and f is a multi-linear function of q.
If f(s, p) is a totally decomposed expression, then a good estimate of the value set can be computed very fast by using
Non-convex Polygon Interval Arithmetic. In this paper, an efficient method to compute good estimate of the value set is
proposed when f is not a totally decomposed expression.

I. INTRODUCTION

The concept of the value set is very useful in analyzing
and designing robust control systems [1] – [5]. Therefore,
many efforts have been done to compute the value set or an
estimate of it [4], [6] – [10].

Since we confine ourselves to the problem of computing
a good estimate of the value set at a given frequency, we
consider a function f(q) from Rm into C, where q is the
vector of uncertain parameters and belongs to a given m-
dimensional box denoted by Q.

If f(q) is a totally decomposed expression (TDExp), that
is, each qi appears exactly once in f(q) 1, then we can
compute good estimate of the value set very fast by using
Non-convex Polygon Interval Arithmetic (NPIA) [10] 2.
However, if f(q) is not a TDExp, then the estimate obtained
by using NPIA might be much larger than the value set.

Let x(q) and y(q) be real and imaginary parts of f(q) and
define the Jacobian matrix H(q) of functions x and y by

H(q) =
[

h1(q) h2(q) · · · hm(q)
]

, (1)

hk(q) =

[

∂x
∂qk

(q)
∂y
∂qk

(q)

]

k = 1, 2, · · · ,m. (2)

At page 146 of [4], it is said, ”The construction of the value
set for m parameters requires again mapping the edges. · · ·
the points [q1 q2 · · · qm]T for which H(q) has rank < 2 have
to be determined. · · · The solution vectors of this system of
equations contribute to the boundary of the value set. These
vectors are in general not easy to describe. · · · In most of
practical cases gridding the whole Q-box is more effective
than solving the system of equations.”

In this paper, under a mild condition, we show that tracing
points satisfying rankH(q) < 2 is much more efficient than

1TDExp corresponds to the totally decomposable tree structured decom-
position [9]. Note that interval polynomials, functions corresponding to GKT
[2] and linear functions f(q) of q have TDExp’s.

2NPIA is the arithmetic defined on the set of all polygons in the complex
plane.

gridding the whole Q-box. Moreover, when f(q) has sub-
functions which are TDExps, we propose a method to reduce
computing time.
Notation: In this paper, for integers i and j such that i <= j,
[i..j] denotes the set of integers {i, i+ 1, · · · , j}. R and C
denote the set of all real and complex numbers, respectively.
For a set V ⊆ Cm, ∂V , int V , ri V and outbdV denote
the boundary of V , the interior of V , the relative interior of
V and the closed set surrounded by the outer boundary of V
(see Fig. 1), respectively. For a finite set V , |V | denotes the
cardinal of V , that is, |V | = n if V = {vi| i ∈ [1..n]}. For
a set {qi ∈ C}mi=1 and a region V ⊆ C, conv [q1, q2, ..., qm]

and conv [V] denote the convex hull of {qi ∈ C}mi=1 and
V . For a given m polytope Q, Fr(Q) denotes the set of all
r-faces of Q.

II. VALUE SET AND ITS BOUNDARY

Let us consider a function f : Q ⊆ Rm → C, where
Q = [0, 1]m and f is twice continuously differentiable in a
open set including Q. For convenience, we denote real and
imaginary parts of f(q) by x(q) and y(q), respectively. The
value set of f is defined by

f(Q) = {f(q) = x(q) + y(q) | q ∈ Q}. (3)

and the issue we consider is to compute outbd f(Q) 3.
If we compute ∂f(Q), we get outbd f(Q) by computing
outbd [∂f(Q)]. Therefore, computing ∂f(Q) plays the main
role in computing outbd f(Q).

PSfrag replacements

V
outbdVinner boundary of V

outer boundary of V

Fig. 1 A set V and outbdV .

3We will explain later the reason why we compute outbd f(Q) not f(Q)
itself.

As we have already quoted, it is said that the point q whose
image locates at the boundary of the value set is a point in
an edge or satisfies rankH(q) < 2, where H(q) is defined
in (1) [4].

Lemma 1: For any F kr ∈ Fr([0, 1]
m), we define J(F kr) ⊆

[1..m] and I(F kr) = [1..m]\J(F kr) such that

F kr = {q ∈ Rm | qi = σi ∈ {0, 1}, i ∈ I(F kr),

qj ∈ [0, 1], j ∈ J(F kr)}. (4)

Let r >= 2 and let J(F kr) = {j1, j2, ..., jr}. For each q ∈ F kr ,
let us define a submatrix H(q; J(F kr)) of H(q) by

H(q; J(F kr)) = [hj1(q) · · · hjr (q)], (5)

Assume that hj1(q) 6= 0. Then the following three conditions
are equivalent.
1) rankH(q; J(F kr)) < 2

2) rank [hj1(q) hj`(q)] < 2 for all ` 6= 1, that is,

ψ(q;F kr) =

ψ1(q;F
k
r)

...
ψr−1(q;F

k
r)

= 0, q ∈ F kr (6)

where ψ`(q;F kr) = det[hj1(q) hj`+1(q)].
3) For each j` ∈ J(F kr), ` 6= 1, there exists a real number
γ`(q) such that hj`(q) = γ`(q)h

j1(q).
Lemma 1 means that, to examine the condition that rank

H(q; J(F kr)) < 2, we need not examine that all 2 × 2-
subdeterminants of H(q; J(F kr)) vanish; it suffices to ex-
amine particular r − 1 subdeterminants. The point q ∈ F kr
satisfying rank H(q; J(F kr)) < 2 is the solution of (6).

Theorem 1: Let Q = [0, 1]m and let F kr ∈ Fr(Q).
Define the set Ω(F kr) by

Ω(F kr) = {q ∈ F kr | ψ(q;F kr) = 0}. (7)

Then, we have

∂f(Q) ⊆

⋃

F kr ∈ Fr(Q), 2 <= r <= m

f(Ω(F kr))

⋃

⋃

Fk
1
∈F1(Q)

f(F k1)

 . (8)

In (8), some of Ω(F kr) may be empty, and in this case we
understand that f(Ω(F kr)) is empty.

In general, q ∈ Ω(F kr), that is, rankH(q; J(F kr)) < 2

does not imply that rankH(q) < 2 since J(F kr) ⊆ [1..m].
This is the reason why the statement in [4] is ambiguous.

To illustrate the idea to compute {Ω(F kr)} and
outbd f(Q), let us consider the case when m = 3. In Fig. 2,

0
1

2

3

4
5

6 7

01 02 13 23 04 15 26 37 45 46 57 67

0132 0154 0264 1375 23764576

0 1 2 3 4 5 6 7

01234567

0: (0,0,0)
1: (1,0,0)
2: (0,1,0)
3: (1,1,0)
4: (0,0,1)
5: (1,0,1)
6: (0,1,1)
7: (1,1,1)

PSfrag replacements
q1

q3
q2

q̂

q̃

A

B

C

D

Fig. 2 AB = Ω(F 2
2) and CD = Ω(F 4

2) are line segments.
Ω(F 1

3) = {χ1,1
3 } is a curve connecting q̂ and q̃.

Q = F 1
3 = [0, 1]3 and the face graph of Q are shown. At the

face graph shown in Fig. 2, Q is represented as 01234567.
The face graph gives the information about the direct in-
clusion relations between faces. Any F kr ∈ Fr([0, 1]

m) has
2r subfaces Fr−1(F

k
r) = {F k`

r−1}
2r
`=1, and ∂F kr consist of

these subfaces. For example, ∂F 1
3 consists of six 2-faces,

F 1
2 = 0132, F 2

2 = 0154, · · · , and F 6
2 = 2376. Since f is a

multi-linear function of q, Ω(F k2), if it is not empty, is a line
segment which is easily obtained. Moreover, according to
our experience, we expect that Ω(F kr) consists from curves
{χk,jr }, which has end points at ∂F kr . Two Ω(F k2)’s are
shown: one is the line segment AB = Ω(F 2

2) and the other
is the line segment CD = Ω(F 4

2). One Ω(F 1
2) = {χ1,1

3 } is
shown. The endpoint of χ1,1

3 are q̂ ∈ Ω(F 2
2) and q̃ ∈ Ω(F 4

2).
A method to compute q̂, q̃ and a method to compute χ1,1

3

from q̂ is proposed later.

To get outbd f(Q), we compute

V1 = outbd

⋃

Fk
1

f(F k1)

V2 = outbd
[

V1

⋃

f(Ω(F 1
2))

]

V3 = outbd
[

V2

⋃

f(Ω(F 2
2))

]

outbd f(Q) = outbd
[

V3

⋃

f(Ω(F 1
3))

]

.

In Fig. 3, an example of computing V1 = outbd [
⋃

F1
f(F k1)]

is shown. Also, in Fig. 4, an example of computing V2 =

outbd
[

V1

⋃

f(Ω(F 1
2))

]

is shown. The algorithm to compute
V1 is given in [10] and the algorithm to compute V2 is also
given in [10].

PSfrag replacements

(a) (b)

Fig. 3 (a) {f(F k1)} and (b) V1 = outbd [
⋃

F1
f(F k1)].

PSfrag replacements

(a) (b)
Fig. 4 (a) V1 and f(Ω(F 1

2)) are drawn by solid line and
dashed line, respectively, and (b) outbd [V1

⋃

f(Ω(F 1
2))].

The outline of the algorithm to compute an estimate of
outbd f(Q) is the following procedure GetBoundary, in
which we assume Ω̂(F kr) is implemented as a list of curves.

procedure GetBoundary
Step 1. V := outbd [{f(F k1)}];
Step 2. for F k2 ∈ F2(Q) do begin
Step 3. compute Ω̂(F k2);
Step 4. V := outbd [V ∪ f(Ω̂(F k2))];

end;
Step 5. if there is no Ω(F k2) 6= ∅ then return V ;
Step 6. for r ∈ [3..m] do begin
Step 7. for F kr ∈ Fr(Q) do begin
Step 8. Ω(F kr) :=GetOmega(F kr);
Step 9. V := outbd [V ∪ {f(Ω(F kr))}];

end;
Step 10. if there is no Ω(F kr) 6= ∅ then return V ;

end;
Step 11. return V ;

procedure GetOmega(F kr)
Step 1. Ω(F kr) := ∅;
Step 2. for F k`

r−1 ∈ Fr−1(F
k
r) do

append GetCurves(r − 1, k`) to Ω(F kr);
Step 3. return Ω(F kr);

procedure GetCurves(r − 1, k`)

Step 1. χ := ∅; Γ := ∅;
Step 2. find all q̂j ∈ Ω(F k`

r−1) such that ψ(q̂j ;F kr) = 0

and append it to Γ;
Step 3. for q̂j ∈ Γ do compute χk,jr and append it to χ;
Step 4. return χ;

At this point we need some remarks.
1) At Step 2 of th GetCurves(r − 1, k`), we search a point
q̂j satisfying

ψ(q̂j ;F kr) = 0, q̂ ∈ χk`,j
r−1. (9)

Since χk`,j
r−1 is given by a list of a finite number of points in

real implementation, there might be no q̂j ∈ χk`,j
r−1 satisfying

(9). To get the first element q̂j of χk,jr , we solve

ψ(q̂j ;F kr) = 0, q̂ ∈ F k`

r−1. (10)

To solve (10), we apply Newton method with the initial
vector q0 ∈ χk`,j

r−1. Since Newton method has the local
convergent area and the quadratic convergence property, it
is reasonable to suppose that (10) has no solution in a
neighborhood of q0 and quit Newton iteration if iteration
number exceed several number or approximate solution goes
out from the neighborhood of q0. Then, we select next
q0 ∈ χk`,j

r−1 for another initial vector. Therefore, this is the
one parameter search, and, hence, it can be done easily.
2) At Step 3 of GetCurves(r − 1, k`), we compute χk,jr ,
which is executed by solving

ψ(q;F kr) = 0, q ∈ F kr , (11)

where F kr is an r-face such that F k`

r−1 ∈ Fr−1(F
k
r).

Note ψ(q; F kr) = 0 consists of r − 1 equations and has
r variables. Therefore, we choose a variable, say qî, as a
parameter and solve (11) for the remaining variables, that is,
when the last point, say qn, in χk,jr is given, we will solve

ψ(qn+1;F kr) = 0, q ∈ F kr , qn+1

î
= qn

î
+ ∆, (12)

where î ∈ J(F kr). When n = 0, that is, q0 = q̂j , then î

= J(F kr) − J(F k`

r−1). If q̂j
î

= 0, then ∆ > 0; if q̂j
î

= 1,
then ∆ < 0. Needless to say, we must choose ∆ so that
0 <= qn

î
+ ∆ <= 1. To compute the solution qn+1 of (12), we

apply Newton method with the initial vector qn+1,0 satisfying
qn+1,0
i = qni if i 6= î and qn+1,0

î
= qn

î
+ ∆. The obtained

solution qn+1 of (12) is appended to χk,jr as the last point.
We continue this process until we reach ∂F kr .

Before we reach ∂F kr , it might happen that (12) has no
solution, which means |∆| is too large, and we reset ∆ :=

∆/2 when |∆| is not too small. If |∆| is very small, we need
to change î. The new î is selected so that

|qn
î
− qn−1

î
| >= |qni − qn−1

i | ∀ i ∈ J(F kr),

and determine the sign of ∆ so that ∆(qn
î
− qn−1

î
) > 0.

To apply Newton method, it is needed that (r−1)×(r−1)

submatrix of ∂ψ∂q (q;F kr) is nonsingular. and, hence, if we face

the situation that ∂ψ
∂q (q;F kr) is singular, we quit to execute

GetBoundaryand we fail to compute an estimate of outbd
f(Q).

Moreover, we supposed that Ω(F kr) consists from curves
{χk,jr }, which has end points at ∂F kr . But, it is not obvious
that this is true or not. The following result gives a partial
answer for this issue.

Theorem 2: For each F kr ∈ Fr([0, 1]
m, r >= 2, and for

each q ∈ Ω(F kr), we assume that hj1(q) 6= 0 and that any
(r − 1) × (r − 1) submatrix of ∂ψ

∂q (q;F kr) is nonsingular,
where ψ(q;F kr) is given by (6).

Given r >= 2. If there is a q∗ ∈ ri F kr such that
ψ(q∗;F kr) = 0, then there exist a continuous function
χk,1r : [0, 1] → F kr and a constant η∗ ∈ (0, 1) such that
q∗ = χk,1r (η∗) and

χk,1r (0), χk,1r (1) ∈ ∂F kr ,

χk,1r (η) ∈ ri F kr ∀ η ∈ (0, 1)

ψ(χk,1r (η);F kr) = 0 ∀ η ∈ [0, 1]

(13)

Theorem 2 implies that Ω(F kr) consists of curves {χk,jr }

and that endpoints of χk,jr are located in ∂F kr , and, hence,
if conditions of Theorem 2 hold, then the proposed method
works effectively.

To examine the usefulness of the proposed method, we
consider f is given by

f(q) =
∑

(k1,k2,k3)∈{0,1}3

Ck1k2k3q
k1
1 qk22 qk33 (14)

We generate 600 examples of f(q) by generating Ck1k2k3
using drand48, which generate pseudo-random numbers. For
each f(q), we compute estimate of outbd f(Q) by applying
the proposed method. f(Ω(F k3)) appears at outbd f(Q) for
only 10 examples.

Fig. 5 shows a typical example. In this case, outbd f(Q) =

outbd [{f(F k1)}]. At qi = [q1, q2, q3]
T , qj = `j/10, `j =

0, 1, · · · , 10, j = 1, 2, 3, we compute f(qi) and show it in
Fig. 5. When readers see these points, readers might consider
that outbd f(Q) is more complicated. But we examined that
the estimate of outbd f(Q) by our method gives the exact
outbd f(Q) by applying finer gridding.

In Fig. 6, there are 12 f(F k1)’s, which are shown by solid
lines, 4 f(Ω(F k2))’s, which are shown by broken lines, and 1

f(Ω(F k3)), which is shown by a dotted line. outbd [{(F k1)}]

is shown by a thick solid polygon. Two of f(Ω(F k2))’s
appears at outbd f(Q) partially. Endpoints f(Ω(F k3)) are
shown by ◦’s.

We also consider 500 multilinear functions of 4 variables.
In this case, some f(Ω(F kr)), r >= 3, appears at outbd f(Q)

for only 16 examples (for 13 examples of them, f(Ω(F kr)),
r >= 3 are overlapped by f(Ω(F k

′

2))). We have similar results
for multilinear functions of 5 or 6 variables.

Moreover, we emphasize that the computing time of the
proposed method is incomparably small than that of gridding
method.

Fig. 5 Fig. 6

III. FURTHER IMPROVEMENT

In this section, we consider to further reduce the comput-
ing time of the method we proposed in the previous section
when f(q) has sub-functions which are TDExps.

Suppose that q ∈ Rm is given by q = [qT1 qT2 · · · qTm̃]T ,
q` ∈ Q` = [0, 1]m` , and f is given by

f(q) = f̃(z), z` = f`(q`), ` ∈ [1..m̃]

where f` is a TDExp and f̃ : Cm̃ → C is a multi-linear
function of z = [z1 z2 · · · zm̃]T . Let Z` = f`(Q`), ` ∈

[1..m̃], and Z = Z1 × Z2 × · · · × Zm̃.
First of all we show the following:
Theorem 3: If z be arbitrary point of Z such that z` ∈

int Z` for some `, then

f̃(z) ∈ int f̃(Z). (15)

Therefore, we have

∂f(Q) = ∂f̃(Z)

⊆ ∂{f̃(z) | z` ∈ ∂Z` ∀ ` ∈ [1..m̃]}. (16)
By Theorem 3, it is enough to consider the image of
”boundary” of Z as long as we consider ∂f(Q).

Since f` is a TDExp, a polygon P` satisfying

outbd f`(Q`) ⊆ P` ⊆ N (outbd f`(Q`); ε)

is computed very fast by using NPIA[10], where N (V ; ε)

denotes an ε neighborhood of V .
In the following, we set Z` = P` ⊇ f`(Q`). Suppose that

Z` is an n`-gon. Let {zj`}
n`

j=1 be the set of all nodes of Z`,
and {Li`Z`

= conv [zis` , zit`], is = 1, 2, · · · , n`} be the set of
all edges of P`, where it = is + 1 if is < n` and it = 1 if
is = n`.

Let I = {I = (i1, i2, ..., im̃) | i` ∈ [1..n`], ` ∈ [1..m̃]}.
Selecting I ∈ I means that we consider a vector z, whose `-
th component z` is on the i`-th edge Li`Z`

of the `-th polygon.
Since any Li`Z`

= conv [zis` , z
it
`] can be written as Li`Z`

=

{t`z`is + (1 − t`)z
`
it
| t` ∈ [0, 1]}, for each I ∈ I we define

a complex function g(·; I) : Rm̃ → C by

g(t; I) = f̃(z), z = [z1 z2 · · · zm̃]T ,

z` = t`z
is
` + (1 − t`)z

it
` ∈ Li`Z`

t` ∈ [0, 1], ` ∈ [1..m̃]. (17)

Then, obviously we have,

∂f(P) =
⋃

I∈I

∂g([0, 1]m̃; I). (18)

By applying Theorems 1, 2 and GetBoundaryfor f(·) =
g(·; I), we can compute ∂g([0, 1]m̃; I). It requires that to
apply GetBoundary |I| times, where |I| =

∏m̃
`=1 n`.

A typical example of f`(q`) is

q` ∈ R3 f`(q`) = s2q`,3 + sq`,2 + q`,1

and Z` is rectangular. In this case, m̃ = m/3, n` = 4,
|I| = 4m̃.

Roughly speaking, computing time of GetBoundaryis pro-
portional to the number of faces of [0, 1]m, which is

∑m
r=1

mCr2
m−r. Note that the ratio
∑m
r=1 mCr2

m−r

∑m̃
r=1 m̃Cr2m̃−r4m̃

≈ e4m̃/18+1.5 m̃ = 1, 2, ..., 7

and, hence, computing Z` and considering f̃(z) is useful to
reduce the computing time.

Let F kr (I) be the k-th r-face of the m̃ polytope [0, 1]m̃

corresponding to I ∈ I and

f(EZ) =
⋃

Fk
1

(I)∈F1([0,1]m̃), I∈I

g(F k1 (I); I)

and
f(VZ(I)) =

⋃

z=Fk
0

(I)∈F0([0,1]m̃)

g(z; I).

To reduce the computing time much more, we propose the
following:

procedure CheckConvHull

Step 1. V := outbd f(EZ);
Step 2. for each I ∈ I do begin

if conv f(VZ(I)) ⊆ V then continue;
Step 3. else V := GetBoundary∪ V ;

end;
Step 4. return V ;

In our experience, by using CheckConvHull, we can
reduce computing time about 1/10.

IV. CONCLUDING REMARK

In this paper, we derived two basic results for computing
the boundary of value sets (Theorems 1 and 3), and proposed
a method computing a good estimate of value sets. At the
present, we have no systematic method to check the condition
in Theorem 2, but at least numerical testing we have no
example that the image of any gridding point locates outside
of the region computed using GetBoundaryas long as we can
examine (for each m ∈ [3..6] we generate at least 500 sets
of coefficient of multi-linear functions by using the function
drand48 generating pseudo-random numbers).

The computing time of the proposed method is incompa-
rably small than that of gridding method. Moreover, we have
a polygon, not just a set of points which are computed by
gridding, and it is very useful in applications, for example it
is easy to check the value set includes 0 or not.

REFERENCES

[1] B. Barmish, New Tools for Robustness of Linear Systems,
Macmillan (1994).

[2] S. P. Bhattacharyya, H. Chapellat and L. H. Keel: Robust
Control: The Parametric Approach, Prentice Hall (1995).

[3] I. Horowitz, Synthesis of Feedback Systems, Academic Press
1963.

[4] J. Ackermann A. Bartlett, D. Kaesbauer, W. Sienel and R.
Steinhauser, Robust Control Systems with Uncertain Physical
Parameters, Springer-Verlag, Berlin (1993).

[5] T. E. Djaferis, Robust Control Design: A Polynomial Ap-
proach, Kluwer Academic Pub. (1995).

[6] J. Ackerman and W. Sienel, ”On the computation of value sets
for robust stability analysis,” Proc. of 1st European Control
Conf. pp.1345–1350 (1991).

[7] P. O. Gutman, C. Baril and L. Neumann, ”An algorithm
for computing value sets of uncertain transfer functions in
fractional form”, IEEE Trans. on Auto. Contr., pp.1268-1273
(1994).

[8] Y. Ohta, L. Gong and H. Haneda, ”Polygon interval arithmetic
and interval evaluation of value sets of transfer functions,”
IEICE Trans. on Fundamentals, Vol. E77-A, No. 6, pp.1033-
1042 (1994).

[9] B. Barmish, J. Ackerman and H. Hu, ”The tree structured
decomposition: a new approach to robust stability analysis,”
Proc. Conf. on Information Sciences and Systems held at
Princeton (1990).

[10] Y. Ohta, ”Non-convex Polygon Interval Arithmetic as a Tool
for the Analysis and Design of Robust Control Systems,” J. of

Reliable Computing, Special Issue on Applications to Control,
Signals, Vol. 6, No.3, pp.247-279 (2000).

[11] L. Bears, Introduction to Topology, New York University
(1945-1955).

[12] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press,
New York (1970).

[13] A. S. B. Holland, Complex Function Theory, Elsevier North

Holland (1980).

APPENDIX

Proof of Theorem 1.
To prove Theorem 1 we need the following:
Lemma A.1: Let F kr ⊆ Q be an r − face, where r >=

2. If q1 ∈ ri Fr and if rankH(q1; Tr) = 2, then f(q1) ∈

ri f(Fr).
(Proof) Let us consider a Function f̃ : Rr → Rr given

f̃(q) = [x(q) y(q) qi3 · · · qir]
T

where i3, · · · , ir are chosen so that det f̃ ′(q1) 6= 0, where
f̃ ′(q1) is the Jacobian matrix of f̃ at q = q1. Then, by
Inverse Function Theorem [12], f̃ is a local homeomorphism
in a neighborhood of q1, and, hence, it is an open mapping
because of the domain invariance theorem [11] (a continuous
local homeomorphism in a finite dimensional space is an
open mapping). Therefore, we have f̃(q1) ∈ ri f(Fr).
Proof of Theorem 1.

Since Q = F 1
m, by Lemma A.1, we have

∂f(Q) ⊆ f(Ω1
m−1) ∪ ∂f(∂Q)

Note that

∂Q =
⋃

Fk
m−1

∈Fm−1(Q)

F km−1,

and by Lemma A.1, if q ∈ ri F kr then f(q) ∈ int f(F kr),
and, hence, we have

∂f(∂Q) ⊆
⋃

Fk
m−1

∈Fm−1(Q)

[f(Ωkm−1) ∪ ∂f(∂F km−1)].

Repeating this process, we finally have (8).

Proof of Lemma 1.
It is easy to see that 1) =⇒ 2) and that 3) =⇒ 1). We show

that 2) =⇒ 3). 2) means that h̃j1 = [hj11 (x) −hj12 (x)]T ∈ R2

and [hj`1 (x) hj`2 (x)]T ∈ R2 is orthogonal. On the other hand,
h̃j1 and [hj11 (x) hj12 (x)]T is orthogonal, and, hence, we have
3). This completes the proof.

Proof of Theorem 2.
Let us consider the case when r = m − 1, k = 1. Other

cases can be proved in a quite similar way.

From the assumption, there exists a ĵ ∈ J1
m = [1..m] such

that the (m−1)×(m−1) matrix M(q) obtained by removing
the ĵ-th column γ(q) from the Jacobian matrix ∂ψ

∂q (q; J1
m−1)

of ψ(q; J1
m−1) is nonsingular. In the following, without loss

of generality, we assume that ĵ = m and let

q =

[

ξ
η

]

,
∂ψ

∂q
(q) = [M(q) γ(q)].

Since M(q) and γ(q) are continuous and since [0, 1]m is
compact, there exists a constant ∆ > 0 such that

‖M(q)−1‖ |γ(q)| <= ∆ ∀ q ∈ [0, 1]m.

Let q1 = q∗. By Implicit Function Theorem, there are
neighborhoods B1

ξ of ξ1 and B1
η = (α1, β1) ⊆ [0, 1] of

η1, where α1 < η1 < β1, such that for any η ∈ [α1, β1]

the equation ψ(q; J1
m) = ψ((ξ, η); J1

m) = 0 has a unique
solution ξ(η) ∈ B1

ξ and that ξ : B1
η → Rm−1 is continuously

differentiable and satisfies

∂ξ

∂η
(η) = M−1(χ(η))γ(χ(η)), χ(η) =

[

ξ(η)
η

]

.

We will show that

∃ η̃ ∈ (η1, 1] : χ(η̃) ∈ ∂[0, 1]m. (A.1)

If β1 >= 1 then there exists η̃ ∈ [η1, β1] such that (A.1)
holds. Therefore, we assume for any η ∈ [η1, β1] χ(η) ∈

int [0, 1]m.
Set i = 2. Suppose that we repeat the following as long

as (A.1) does not hold:
At qi = χ(βi−1), apply Implicit Function Theorem to have

Biξ of ξi and Biη = (αi, βi) ⊆ [0, 1] of ηi, then increment i.
Then, the above repetition ends for a finite i (in this

case, (A.1) holds), or we have a monotone increasing infinite
sequence {βj} and

χ(η) ∈ int [0, 1]m ∀ η ∈ [βi−1, βi] ⊆ [0, 1].

Then, β̃ = limj→∞ βj <= 1, and for any k < j we have

|ξ(βj) − ξ(βk)| =

∣

∣

∣

∣

∣

∫ βj

βk

∂ξ

∂β
(β)dβ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j−1
∑

`=k

∫ β`+1

β`

J−1(χ`(β))γ(χ`(β))dβ

∣

∣

∣

∣

∣

<= ∆|βj − βk|,

and, hence, {ξ(βk)} is a Cauchy sequence and it converges. If
we set χ(β̃) = limk→∞ χ(βk), then we have ψ(χ(β̃); J1

m) =

0 by the continuity of ψ.
If χ(β̃) ∈ ∂[0, 1]m, then we have (A.1) for η̃ = β̃.
If it is not, (i.e., χ(β̃) ∈ int [0, 1]m), then β̃ < 1 and

we apply Implicit Function Theorem at χ(β̃) and have B′
ξ

and (α′, β′), β′ > β̃, which contradict to the construction of
{βj} and definition of β̃.

Therefore, the above repetition must finish in finite times,
and (A.1) holds.

Similarly , we can show that there is an η̂ < η∗ such that
χ(η̂) ∈ ∂[0, 1]m.

Finally, by an affine transformation mapping [η̂, η̃] into
[0, 1], we have the conclusion.

Proof of Theorem 3.
Let i be an index such that zi ∈ int Zi and let Z̃ =

{z̃ ∈ Z | z̃j = zj j 6= i, z̃i ∈ Zi}. Obviously z ∈ Z̃ and
there is a relative open set G ⊆ Z̃ such that z ∈ G. We
consider a function f̂ : Z̃ → C defined by f̂(z) = f̃(z). Then
by Open-Mapping Theorem ([13], p.225), f̂(G) = f̃(G) is
an open set, and, hence, we have (15). From (15), we easily
have (16). This completes the proof.

