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Abstract

In this brief paper, we study the value function in maximum hands-off control. Maximum hands-off control, also known as
sparse control, is the L0-optimal control among the feasible controls. Although the L0 measure is discontinuous and non-
convex, we prove that the value function, or the minimum L0 norm of the control, is a continuous and strictly convex function
of the initial state in the reachable set, under an assumption on the controlled plant model. We then extend the finite-horizon
maximum hands-off control to model predictive control (MPC), and prove the recursive feasibility and the stability by using
the continuity and convexity properties of the value function.
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1 Introduction

Optimal control is widely used in recent industrial prod-
ucts not just for achieving the best performance but
for reducing the control effort. For example, the classi-
cal LQR (Linear Quadratic Regulator) control gives a
way to consider the tradeoff between performance and
control-effort reduction by using weighting functions on
the states and the control inputs with the L2 norm (i.e.
the energy); see Anderson and Moore (2007) for exam-
ple.

Recently, a novel control method, called maximum
hands-off control, has been proposed in Nagahara et al.
(2013, 2016), which maximizes the time duration in
which the control is exactly zero among the feasible
controls. An example of hands-off control is a stop-
start system in automobiles, in which an automobile
automatically shuts down the engine (i.e. zero control)
to avoid it idling for long periods of time, and also to
reduce CO or CO2 emissions as well as fuel consump-
tion. Therefore, the hands-off control is a kind of green
control as discussed in Nagahara et al. (2014b). Also,
the hands-off control is effective in hybrid/electric vehi-
cles, railway vehicles, networked/embedded systems, to
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name a few; see Nagahara et al. (2016).

Maximum hands-off control is related to sparsity, which
is widely studied in compressed sensing, for which we
point the reader to Eldar and Kutyniok (2012). Sparsity
is also applied to control problems such as networked
control in Nagahara et al. (2014a); Kong et al. (2015),
security of control systems in Fawzi et al. (2014), state
estimation in Sanandaji et al. (2014), to name a few.

A mathematical difficulty in the maximum hands-off
control is that the cost function, which is defined by the
L0 measure (the support length of a function), is highly
nonlinear; it is discontinuous and non-convex. To solve
this problem, a recent work of Nagahara et al. (2013,
2016) has proposed to reduce the problem to an L1 opti-
mal control problem, and shown the equivalence between
the maximum hands-off (or L0 optimal) control and the
L1 optimal control under the assumption of normality.

Motivated by this work, we investigate the value func-
tion in the maximum hands-off control. The value func-
tion is defined as the optimal value of the cost function of
the optimal control problem. Although the L0 measure
in the maximum hands-off control is discontinuous and
non-convex, we prove that the value function is a con-
tinuous and strictly convex function of the initial state
in the reachable set, under an assumption on the con-
trolled plant model. We then extend the finite-horizon
maximum hands-off control to model predictive control
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(MPC), and prove the recursive feasibility (see Rossiter
(2004)) and the stability by using the continuity and
convexity properties of the value function.

The present paper expands on our recent conference con-
tributions of Ikeda and Nagahara (2015b,a) by rearrang-
ing the contents, incorporating convexity analysis of the
value function, and including extension to model predic-
tive control.

The remainder of this paper is organized as follows: In
Section 2, we give mathematical preliminaries for our
subsequent discussion. In Section 3, we review the prob-
lem of maximum hands-off control. Section 4 investi-
gates the continuity of the value function in maximum
hands-off control, and Section 5 discusses its convexity.
Section 6 discusses model predictive control and the sta-
bility. Section 7 presents an example of model predic-
tive control to illustrate the effectiveness of the proposed
method. In Section 8, we offer concluding remarks.

2 Mathematical Preliminaries

This section reviews basic definitions, facts, and notation
that will be used throughout the paper.

Let n be a positive integer. For a vector x ∈ Rn and a
scalar ε > 0, the ε-neighborhood of x is defined by

B(x, ε) , {y ∈ Rn : ‖y − x‖ < ε},

where ‖ · ‖ denotes the Euclidean norm in Rn. Let X be
a subset of Rn. A point x ∈ X is called an interior point
of X if there exists ε > 0 such that B(x, ε) ⊂ X . The
interior of X is the set of all interior points of X , and we
denote the interior of X by intX . A set X is said to be
open if X = intX . For example, intX is open for every
subset X ⊂ Rn. A point x ∈ Rn is called an adherent
point of X if B(x, ε) ∩ X 6= ∅ for every ε > 0, and the
closure of X is the set of all adherent points of X . A set
X ⊂ Rn is said to be closed if X = X , where X is the
closure of X . The boundary of X is the set of all points in
the closure of X , not belonging to the interior of X , and
we denote the boundary ofX by ∂X , i.e., ∂X = X−intX ,
where X1−X2 is the set of all points which belong to the
set X1 but not to the set X2. In particular, if X is closed,
then ∂X = X − intX , since X = X . A set X ⊂ Rn is
said to be convex if, for any x, y ∈ X and any λ ∈ [0, 1],
(1− λ)x+ λy belongs to X .

A real-valued function f defined on Rn is said to be
upper semi-continuous on Rn if for every α ∈ R the
set {x ∈ Rn : f(x) < α} is open, and f is said to be
lower semi-continuous on Rn if for every α ∈ R the set
{x ∈ Rn : f(x) > α} is open. It is known that a function
f is continuous on Rn if and only if it is upper and lower
semi-continuous on Rn; see e.g. (Rudin, 1987, pp. 37). A

real-valued function f defined on a convex set C ⊂ Rn is
said to be convex if

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y),

for all x, y ∈ C and all λ ∈ (0, 1), and f is said to
be strictly convex if the above inequality holds strictly
whenever x and y are distinct points and λ ∈ (0, 1).

Let T > 0. For a continuous-time signal u(t) over a time
interval [0, T ], we define its L1 and L∞ norms respec-
tively by

‖u‖1 ,
∫ T

0

|u(t)|dt, ‖u‖∞ , sup
t∈[0,T ]

|u(t)|.

We define the support set of u, denoted by supp(u), by
the closure of the set {t ∈ [0, T ] : u(t) 6= 0}. TheL0 norm
of a measurable function u as the length of its support,
that is,

‖u‖0 , m
(
supp(u)

)
,

where m is the Lebesgue measure on R.

3 Maximum Hands-off Control Problem

In this paper, we consider a linear time-invariant system
represented by

ẋ(t) = Ax(t) +Bu(t), t ≥ 0, (1)

where x(t) ∈ Rn, u(t) ∈ R, A ∈ Rn×n, and B ∈ Rn×1.
We here consider a single-input case for simplicity (see
Ikeda and Nagahara (2015b) for a multi-input case).
Throughout this paper, we assume the following:

Assumption 1 The pair (A,B) is controllable and the
matrix A is nonsingular.

Let T > 0 be the final time of control. For the system
(1), we call a control u = {u(t) : t ∈ [0, T ]} ∈ L1 feasible
if it steers x(t) from a given initial state x(0) = ξ ∈ Rn
to the origin at time T (i.e., x(T ) = 0), and satisfies the
magnitude constraint ‖u‖∞ ≤ 1. We denote by U(ξ) the
set of all feasible controls for an initial state ξ ∈ Rn, that
is,

U(ξ) ,

{
u ∈ L1 :

∫ T

0

e−AsBu(s)ds = −ξ, ‖u‖∞ ≤ 1

}
.

(2)

The maximum hands-off control is the minimum L0-
norm (or the sparsest) control among the feasible control
inputs. This control problem is formulated as follows.

Problem 2 (Maximum hands-off control) For a
given initial state ξ ∈ Rn, find a feasible control u ∈ U(ξ)
that minimizes J(u) = ‖u‖0.
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Fig. 1. The L0 kernel φ0(u) and its convex approximation
|u| for the L1 norm.

The value function for this optimal control problem is
defined as

V (ξ) , min
u∈U(ξ)

J(u) = min
u∈U(ξ)

‖u‖0. (3)

Note that the cost function J(u) can be rewritten as

J(u) =

∫ T

0

φ0(u) dt,

where φ0 is the L0 kernel function defined by

φ0(u) ,

{
1, if u 6= 0,

0, if u = 0.

Fig. 1 shows the graph of φ0(u). As shown in this figure,
the kernel function φ0(u) is discontinuous at u = 0 and
non-convex. However, in the following sections, we will
show that the value function V (ξ) in (3) is continuous
and strictly convex.

4 Continuity of Value Function

In this section, we investigate the continuity of the value
function V (ξ) in (3).

First, we define the reachable set for the control problem
(Problem 2) by

R ,

{∫ T

0

e−AsBu(s)ds : ‖u‖∞ ≤ 1

}
⊂ Rn.

The following is a fundamental lemma of the paper:

Lemma 3 Suppose Assumption 1 is satisfied. Let us
consider L1 optimal control with

J1(u) :=

∫ T

0

|u(t)|dt, V1(ξ) := min
u∈U(ξ)

J1(u). (4)

Then, for every ξ ∈ R, we have V (ξ) = V1(ξ).

PROOF. By Assumption 1, the L1-optimal control
problem associate with (4) is normal (see (Athans and
Falb, 1966, Theorem 6-13)). Also, for ξ ∈ R, an L1-
optimal control u∗ ∈ U(ξ) minimizing J1 exists (see
Lemma 12 in Appendix A), and u∗(t) ∈ {−1, 0, 1} for
almost all t ∈ [0, T ] (this is called the “bang-off-bang”
property; see (Athans and Falb, 1966, Section 6-14) for
example). Then by (Nagahara et al., 2013, Theorem 5),
u∗ is also the optimal control of Problem 2, and we have

V (ξ) = min
u∈U(ξ)

‖u‖0 = ‖u∗‖0 = ‖u∗‖1 = V1(ξ),

where we used the “bang-off-bang” property of u∗ for
the third equality. 2

Note that the absolute value |u| in (4) is a convex ap-
proximation of φ0(u) as shown in Fig. 1. Associated with
V1(ξ), we define the following subset of R with α ≥ 0:

Rα ,

{∫ T

0

e−AsBu(s)ds : ‖u‖∞ ≤ 1, ‖u‖1 ≤ α
}
.

(5)
For the set Rα, we have another fundamental lemma.

Lemma 4 Suppose Assumption 1 is satisfied. Then, for
every α ∈ [0, T ],

Rα = {ξ ∈ R : V (ξ) ≤ α}, (6)

∂Rα = {ξ ∈ R : V (ξ) = α}, (7)

intRα = {ξ ∈ R : V (ξ) < α}. (8)

PROOF. See Appendix A. 2

From these lemmas, we show the continuity of the value
function V (ξ).

Theorem 5 If Assumption 1 is satisfied, then V (ξ) is
continuous on R.

PROOF. Define

V (ξ) ,

{
V (ξ), if ξ ∈ R,
T, if ξ ∈ Rn −R.

It is enough to show that V (ξ) is continuous on Rn.

First, we show that the lower level set

Lα , {ξ ∈ Rn : V (ξ) < α}
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is open for everyα ∈ R. Ifα ≤ 0, then the setLα is empty
since for any ξ ∈ Rn, V (ξ) ≥ 0. If α > T , then the set Lα
is Rn, since for any ξ ∈ R, V (ξ) ≤ T . If 0 < α ≤ T , then
the set Lα is a subset of R, and coincides with intRα by
Lemma 4. Therefore, the set Lα is open for every α ∈ R.
It follows that V (ξ) is upper semi-continuous on Rn.

Next, we show that the upper level set

Lα , {ξ ∈ Rn : V (ξ) > α}

is open for every α ∈ R. If α < 0 or α ≥ T , then the
set Lα is Rn or empty, respectively. If 0 ≤ α < T , from
Lemma 4, we have

Lα = Rn − {ξ ∈ R : V (ξ) ≤ α} = Rn −Rα.

Since Rα is closed (see Lemma 10 in Appendix A), the
set Lα is open for every α ∈ R. It follows that V (ξ) is
lower semi-continuous on Rn.

Since V (ξ) is upper and lower semi-continuous on Rn, it
is continuous on Rn, and the conclusion follows. 2

Theorem 5 leads to an important result of L1 optimal
control as follows.

Corollary 6 If Assumption 1 is satisfied, then V1(ξ) is
continuous on R.

PROOF. This is a direct consequence of Lemma 3 and
Theorem 5. 2

5 Convexity of Value Function

Here we show the convexity of the value function V (ξ).
Although the kernel function φ0(u) in the cost function
is not convex as shown in Fig. 1, the value function V (ξ)
is a convex function on R.

Theorem 7 If Assumption 1 is satisfied, then V (ξ) is
strictly convex on R.

PROOF. From Lemma 3, it is enough to prove that
the L1 value function V1(ξ) is strictly convex on R

First, we prove that V1(ξ) is convex on R. Take any
ξ, η ∈ R, and λ ∈ (0, 1). Then there exist L1-optimal
controls uξ and uη for initial states ξ and η, respectively
(see Lemma 12 in Appendix A). Obviously, the following
control

u , (1− λ)uξ + λuη (9)

steers the state from the initial state (1 − λ)ξ + λη to
the origin at time T , and it satisfies ‖u‖∞ ≤ 1. That is,
we have u ∈ U

(
(1− λ)ξ + λη

)
. Therefore

V1
(
(1− λ)ξ + λη

)
≤ ‖u‖1
≤ (1− λ)‖uξ‖1 + λ‖uη‖1
= (1− λ)V1(ξ) + λV1(η),

(10)

and hence V1(ξ) is convex on R.

Next, we will show the strict convexity of V (ξ). To prove
this, we will show that a contradiction is implied by
assuming that there exist ξ, η ∈ R with ξ 6= η and
λ ∈ (0, 1) such that

V1
(
(1− λ)ξ + λη

)
= (1− λ)V1(ξ) + λV1(η). (11)

Let uξ and uη be L1-optimal controls for initial states
ξ and η, respectively. Let u be as in (9). From (10) and
(11), it follows that

V1
(
(1− λ)ξ + λη

)
= ‖u‖1 = (1− λ)‖uξ‖1 + λ‖uη‖1,

so the control u = (1 − λ)uξ + λuη is an L1-optimal
control for the initial state (1− λ)ξ + λη.

Now, by Assumption 1, uξ(t) and uη(t) take the val-
ues 1, 0, and −1 at almost all t ∈ [0, T ]. So, the pair
(uξ(t), uη(t)) takes the following values on [0, T ] except
for sets of measure zero: (1, 1), (1, 0), (1,−1), (0, 1),
(0, 0), (0,−1), (−1, 1), (−1, 0), (−1,−1). For the above
pairs of (uξ(t), uη(t)), the control u = (1 − λ)uξ + λuη
respectively takes the following values: 1, 1− λ, 1− 2λ,
λ, 0, −λ, −1 + 2λ, −1 + λ, −1. On the other hand, the
control u is also L1 optimal and takes the values 1, 0,
and −1 at almost all t ∈ [0, T ]. Since λ ∈ (0, 1), we have

m(I1,0 ∪ I0,1 ∪ I0,−1 ∪ I−1,0) = 0, (12)

where

Ii,j , {t ∈ [0, T ] : (uξ(t), uη(t)) = (i, j)},

for i, j ∈ {−1, 0, 1}. If λ 6= 1/2, then we also have

m(I1,−1 ∪ I−1,1) = 0,

and it follows that

m(I1,1 ∪ I0,0 ∪ I−1,−1) = T,

that is, uξ(t) = uη(t) for almost all t ∈ [0, T ]. This im-
plies ξ = η, but this contradicts the assumption, so we
have λ = 1/2. Then the pair (uξ(t), uη(t)) on [0, T ] ex-
cept for sets of measure zero takes values (1, 1), (1,−1),
(0, 0), (−1, 1), and (−1,−1). Since ξ 6= η, we have

T1 , m(I1,−1 ∪ I−1,1) > 0. (13)
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Let T2 , m(I1,1) and T3 , m(I−1,−1). From (12) and
the fact that uξ +uη = 0 on I1,−1∪I−1,1∪I0,0, we have

V1

(
1

2
ξ +

1

2
η

)
=

1

2
‖uξ + uη‖1 = T2 + T3, (14)

On the other hand,

1

2
V1(ξ) +

1

2
V1(η) =

1

2
‖uξ‖1 +

1

2
‖uη‖1

= T1 + T2 + T3.
(15)

Equations (11), (14) and (15) imply that T1 = 0, which
contradicts (13). 2

6 Model Predictive Control

In this section, we extend the sparse optimal control to
model predictive control (MPC). We assume the con-
trolled plant is given by (1). Here we assume state feed-
back, that is, for every t ∈ [0,∞), x(t) can be obtained.

The control algorithm adopted here is given as follows.
First, let us take a sequence {tk}∞k=0 of sampling times,
where we assume 0 = t0 < t1 < t2 < · · · and there exists
τ > 0 such that

τ < tk+1 − tk ≤ T, k = 0, 1, 2, . . . . (16)

We also assume that an initial state x(0) = ξ ∈ R is
given. At each sampling time tk, the optimal control
uk(t) for t ∈ [tk, tk + T ] is computed by solving the
sparse optimal control problem (Problem 2) on the in-
terval [tk, tk + T ], where the current state x(tk) is used
as the initial state, and only the control on the interval
[tk, tk+1] is applied to the plant. If each optimization has
the optimal solution, then this process gives a control

u(t) = uk(t), t ∈ [tk, tk+1], (17)

where k = 0, 1, 2, . . . . Since tk+1 − tk ≥ τ > 0, the
control u(t) is defined for all t ∈ [0,∞).

We first show the recursive feasibility, which is discussed
in Rossiter (2004), of the MPC, that is, for t = t1, t2, . . . ,
the optimal control problem is feasible. Equivalently, we
show x(tk) ∈ R for k = 1, 2, . . . .

Theorem 8 Assume (16) is satisfied and x(0) ∈ R. If
Assumption 1 is satisfied, then we have x(tk) ∈ R for
k = 1, 2, . . ..

PROOF. If Assumption 1 is satisfied, then from
Lemma 12 in Appendix 12 and Theorem 8 of Nagahara
et al. (2016), the sparse optimal control exists for any

initial states in the reachable set R. The state x(t) for
t ∈ [0, t1] obviously exists in the reachable set R while
the control u0 is used, since any point out of the set
R needs a time duration more than T to be steered to
the origin by any control v with ‖v‖∞ ≤ 1. Therefore
the next optimization at the time t1 has the optimal
solution u1, and then the state x(t) for t ∈ [t1, t2] exists
in the reachable set R while the control u1 is used. It
follows that the state exists in the reachable set R at all
times under this situation, in particular x(tk) ∈ R for
k = 1, 2, . . . . 2

By this theorem, the optimal control uk always exists
and hence the control u is well defined.

Next, we investigate the stability under the model pre-
dictive control given in (17). More precisely, the question
here is whether the origin is stable in the sense of Lya-
punov regardless of how to take sampling times when
we use the control u defined by (17). From the recursive
feasibility and the continuity and convexity of the value
function V , we can prove the origin is stable in the sense
of Lyapunov, that is, when a sequence {tk}∞k=0 is taken,
then for every ε > 0 there exists δ > 0 such that for
any initial state ξ with ‖ξ‖ < δ an inequality ‖x(t)‖ < ε
holds for all t ≥ 0, where x is the state with x(0) = ξ
and is obtained by using the control u given in (17).

Theorem 9 Assume (16) is satisfied and x(0) ∈ R. If
Assumption 1 is satisfied, then the origin is stable in the
sense of Lyapunov regardless of how the sequence {tk}∞k=0
of sampling times is taken when the control u defined by
(17) is used.

PROOF. Fix a sequence {tk}∞k=0 and ε > 0. Since R
contains the origin as an interior point if the pair (A,B)
is controllable (see (Hermes and Lasalle, 1969, Theorem
17.3)), we can take r ∈ (0, ε) such that

Br , {ξ ∈ Rn : ‖ξ‖ ≤ r} ⊂ R.

Since V is continuous on ∂Br, we can define

α , min
‖ξ‖=r

V (ξ).

Clearly, α > 0 since V (ξ) > 0 for ξ 6= 0. Take β ∈ (0, α),
then the setRβ∩∂Br is empty, and the setRβ is convex
from the convexity of V and Lemma 4, and it contains
the origin. Therefore we have Rβ ⊂ intBr.

From the continuity of V at the origin, there exists δ > 0
such that ‖ξ‖ < δ implies

0 ≤ V (ξ) ≤ β. (18)
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When we use the control u defined by (17) for ξ with
‖ξ‖ < δ, it is clear that we have

V (xξ(t)) ≤ V (ξ) (19)

for all t ≥ 0, where xξ(t) is the state with xξ(0) = ξ and
is obtained by using the control u. Therefore for ξ with
‖ξ‖ < δ we have V (xξ(t)) ≤ β for all t ≥ 0 from (18) and
(19). Since Rβ ⊂ Br ⊂ Bε, for any initial state ξ with
‖ξ‖ < δ we have xξ(t) ∈ Bε for all t ≥ 0, which means
that the origin is stable in the sense of Lyapunov. 2

7 Example

In this section, we consider a simple example with a 1-
dimensional (i.e. n = 1) linear control system (1) with
A = a > 0 (unstable) and B = b 6= 0. The pair (A,B)
obviously satisfies Assumption 1, and hence the value
function V (ξ) is continuous and convex on the reachable
set R (see below for details).

The reachable setR and the maximum hands-off control
uξ for an initial state ξ ∈ R are computed via the bang-
bang principle (see (Hermes and Lasalle, 1969, Theorem
12.1)) and the minimum principle for L1-optimal control
(see (Athans and Falb, 1966, Section 6.14)) as

R = [−x1, x1], x1 =
|b|
a

(1− e−aT ),

and

uξ(t) =

{
−sgn(b)sgn(ξ), t ∈ [0, τξ),

0, t ∈ [τξ, T ],

where sgn(x) = x/|x| for x 6= 0 and sgn(0) = 0, and

τξ ,
1

a
log

|b|
|b| − a|ξ|

.

On the other hand, the conventional energy-minimizing
control (i.e. L2-optimal control) that minimizes the L2

norm of the control u subject to u ∈ U(ξ) is given by

vξ(t) =

{
−sgn(b)sgn(ξ), t ∈ [0, θξ),

c(ξ)e−at, t ∈ [θξ, T ],

for some c(ξ) ∈ R and θξ > 0 (see (Athans and Falb,
1966, Section 6.20)).

Using these controls, we simulate MPC with a = 1, b =
2, T = 5, and ξ = 1. In this case, x1 = 2(1 − e−5), and
the value function is obtained by

V (ξ) = ‖uξ‖0 = |τξ| =
∣∣∣∣log

2

2− |ξ|

∣∣∣∣,

Fig. 2. Value function V (ξ)

for ξ ∈ R = [−x1, x1]. Fig. 2 shows the value function,
which is clearly continuous and convex. The sampling
instants for MPC are taken as t1 = 2, t2 = 5.5, t3 = 6.5,
and t4 = 10. Under these parameters, we consider a
noisy control system

ẋ(t) = ax(t) + bu(t) + w(t),

where w(t) is additive noise generated from the uniform
distribution on [−1, 1]. Fig. 3 shows the simulation re-
sults (control u(t) and state x(t)) with the two controls.
We can see that the L0 MPC gives a sparser control than
the L2 MPC, while the state trajectory by L0 MPC is
more attenuated than that by L2 MPC.

8 Conclusion

In this brief paper, we have proved the continuity and the
strict convexity of the value function of the maximum
hands-off control problem under an assumption of the
controlled system. These properties of the value function
plays an important role to prove the stability when we
extend the control to the model predictive control.
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A Proof of Lemma 4

To prove Lemma 4, we need some lemmas.

Lemma 10 The set Rα in (5) satisfies the following:

(1) For every α ∈ R, Rα is compact.
(2) For every α ∈ R, Rα ⊂ R, with equality for α ≥ T .
(3) R0 = {0}.
(4) Rα ⊂ Rβ for 0 ≤ α ≤ β.

PROOF. See (Hajek, 1979, Lemma 2.1). 2

Lemma 11 For every α ∈ [0, T ], we have

Rα = {ξ ∈ R : ∃u ∈ U(ξ) s.t. ‖u‖1 ≤ α}.

PROOF. First, fix α ∈ [0, T ] and take any ξ ∈ Rα.
Then, by the definition ofRα, there exists u ∈ U(ξ) such
that ‖u‖1 ≤ α and

ξ =

∫ T

0

e−AsBu(s)ds.

From (2), it follows that the control v := −u is a feasi-
ble control, that is, v ∈ U(ξ), and also satisfies ‖v‖1 =
‖u‖1 ≤ α. By definition, Rα ⊂ R and hence ξ ∈ R.
Therefore, we have

ξ ∈ {ξ ∈ R : ∃u ∈ U(ξ) s.t. ‖u‖1 ≤ α}.
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Conversely, fix α ∈ [0, T ] and take any

ξ ∈ {ξ ∈ R : ∃u ∈ U(ξ) s.t. ‖u‖1 ≤ α}.

That is, ξ ∈ R is an initial state for the system (1),
and there exists a feasible control u ∈ U(ξ) such that
‖u‖1 ≤ α. Then from (2), we have

ξ =

∫ T

0

e−AsB
(
−u(s)

)
ds.

The control v = −u satisfies

‖v‖1 = ‖u‖1 ≤ α, ‖v‖∞ = ‖u‖∞ ≤ 1,

and hence we have ξ ∈ Rα. 2

Lemma 12 For each initial value ξ ∈ R, there exists a
feasible control u ∈ U(ξ) with minimum L1-cost ‖u‖1.
Furthermore, then, ξ ∈ ∂Rα with α = ‖u‖1.

PROOF. See (Hajek, 1979, Lemma 3.1). 2

Now, let us prove (6). First, fix α ∈ [0, T ] and take any
ξ ∈ Rα. Then, from Lemma 10, we have ξ ∈ R, and from
Lemma 12, there exists an L1-optimal control u∗ ∈ U(ξ).
Also, we have V1(ξ) = ‖u∗‖1 ≤ α by Lemma 11. Then,
from Lemma 3, we have V (ξ) ≤ α. That is, we have

ξ ∈ Lα , {ξ ∈ R : V (ξ) ≤ α}.

Conversely, fix α ∈ [0, T ] and take any ξ ∈ Lα. From

Lemma 3, we have V1(ξ) ≤ α. Let β , V1(ξ). From
Lemma 12, we have ξ ∈ ∂Rβ , and it follows from Lemma
10 that ξ ∈ ∂Rβ ⊂ Rβ ⊂ Rα.

Next, we prove the equation (7); then the equation (8)
follows immediately from (6) and (7), since Rα is closed
for every α ≥ 0 from Lemma 10. If α = 0, then ∂R0 =
{0}, since R0 = {0}. It follows from (6) that

{ξ ∈ R : V (ξ) = 0} = R0 = {0} = ∂R0.

Fix α ∈ (0, T ]. We can take ξ ∈ ∂Rα, since ∂Rα is
not empty (Note that Rn and the empty set are the
only subsets whose boundaries are empty, since Rn is
connected; see (Singh, 2013, Chapter 3)). Since ξ ∈ Rα,
we have V (ξ) ≤ α. If V (ξ) < α, then from (Hajek, 1979,
Lemma 4.2) we have

ξ ∈ ∂RV (ξ) ⊂ RV (ξ) ⊂ intRα,

and hence a contradiction occurs. Therefore we have
V (ξ) = α, and hence

∂Rα ⊂ {ξ ∈ R : V (ξ) = α},

and {ξ ∈ R : V (ξ) = α} is not empty for every α ∈
(0, T ]. Then it follows from Lemma 12 that

{ξ ∈ R : V (ξ) = α} ⊂ ∂Rα

for every α ∈ (0, T ], and the conclusion follows.
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