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A BRIEF OVERVIEW OF SIGNAL RECONSTRUCTION VIA
SAMPLED-DATA H∞ OPTIMIZATION
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Abstract. This paper gives a brief account of a new method for signal reconstruction by
employing the mathematical machinery from sampled-data control theory. We formulate the
signal reconstruction problem in terms of an analog performance optimization problem using a
stable discrete-time filter. The proposed H∞ performance criterion naturally takes intersample
behavior into account, reflecting the energy distributions of the signal. We present a method
for computing optimal solutions which are guaranteed to be stable and causal. Comparisons to
alternative methods are also presented.
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1. Introduction

Digitization of analog information such as voice, images, and video is a ubiquitous feature of
modern communications and information technology. Therefore, reconstruction of the original
analog signal from its digital version is a problem of great interest and importance. These recon-
struction procedures and used everywhere: music players, mobile telephones, cameras, television,
etc. We note that there is a critical distinction between compression/transmission/recovery of
digital data and our focus here with the reconstruction of the original analog data from which
such digital data are generated.

Shannon’s pioneering and much celebrated paper [27] was a landmark development in this
signal reconstruction problem. Under the assumption that the original analog signal is band-
limited (below the so-called Nyquist frequency), he showed that the original analog signal can
be exactly reconstructed by using the sampling theorem [44]. Shannon’s framework established
a fundamental paradigm for digital signal processing. We will hereafter refer to this scheme the
Shannon paradigm. However, the band-limitedness assumption, necessary for perfect signal
reconstruction, is not easily satisfied. In many applications, the sampling rate is not high
enough to allow for this assumption to hold even approximately. To address this problem, an
anti-aliasing filter is often introduced to sharply cut high frequency components. This in turn
leads to yet another type of distortion due to the Gibbs phenomenon (see Section 6 below).
Moreover, the sinc function, which is the impulse response of the ideal reconstruction filter,
is not causal and does not decay very fast. This slow decay rate makes it very difficult to
implement. Various approximations thus become necessary. This procedure further complicates
the digital filter design procedure, making it less transparent.
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Motivated by these issues, many researchers have been developing techniques that aim to solve
the signal reconstruction problem under the assumption of non-ideal signal acquisition devices.
An excellent survey of this stream of literature can be found in [30]. In this research framework,
the digital signal is assumed to be the sampled version of an analog signal processed through a
non-ideal analog filter. The reconstruction process then attempts to recover the original signal.
The idea is to place the problem into the framework of the (orthogonal or oblique) projection
theorem (in usually L2), and then project the signal space to the subspace generated by the
shifted reconstruction functions. It is often required that the process give a consistent result,
i.e., if we subject the reconstructed signal to the whole sampling process again, it should yield
the same sampled values from which it was reconstructed [28].

The principal objective of the present paper is to present a relatively brief summary of an
entirely new approach to the signal reconstruction problem. This approach takes its inspiration
from the modern sampled-data control theory, developed in the control community since the
1990’s. The fundamental accomplishment of modern sampled-data control theory is that it
gives us a discrete-time controller (or filter) that optimizes the closed-loop performance with
intersample behavior taken into account. In particular, it optimizes an analog (continuous-time)
performance metric. These metrics are given in terms of H∞ or H2 norms. This framework
gives us an ideal platform to reconstruct the original analog signals from their sampled-data
versions when original signal is not band-limited.

Chen and Francis [5] made a first attempt to apply sampled-data control theory to signal pro-
cessing (however in a discrete-time domain); see also [14]. Starting in 1995, the present authors
and our colleagues have pursued the signal reconstruction problem in the sampled-data context
to obtain an optimal analog performance via digital filtering: See [19, 41, 36, 42] for general
design frameworks, [15, 25] for sample-rate conversion, [40] for multirate filterbank design, [1, 2]
for audio signal compression, [16] for image restoration, [26] for fractional delay filters, [17] for
wavelet expansion, and [35, 39] for convergence analysis. The method has also been patented
[37, 38, 12, 13] and implemented into sound processing LSI chips as a core technology by Sanyo
Semiconductors, and successfully used in mobile phones, digital voice recorders and MP3 play-
ers; their cumulative production has exceeded 30 million units as of 2011. Our objective here is
to present a succinct exposition of some key aspects of this body of work.

The same philosophy of emphasizing the importance of analog performance was proposed
and pursued recently by Unser and co-workers [31, 32]. The crucial difference is however that
they rely on L2/H2 type optimization and oblique projections, which are very different from our
method here. In particular, it can raise some stability questions. The recent work of Meinsma
and Mirkin [21, 22] takes an approach that is close to ours. They give solutions for non-causal
problems and allow freedom in the choice of sample or hold devices. A detailed comparison of
our work and these related works is provided in [42]. Some other approaches (not very closely
related to our work) to extending the traditional sampling theory include: reconstruction by
quasi-interpolation [6], and minimization of the worst-case regret [9].

The present paper is organized as follows: After preparing some basic notions in function
spaces in Section 2, we first review the fundamentals in signal reconstruction using the sampling
theorem, and discuss its various drawbacks in Section 3. We will then give a fundamental setup
and formulation of our sampled-data filter design framework in Section 4, and Section 5 gives
a solution method via fast-sample/fast-hold approximation. Finally, we give some examples in
signal reconstruction in Section 6.

In closing this Introduction, we note that this paper draws heavily from our very recent paper
[42]. We refer the interested reader to this paper for detailed technical proofs, comparisons to
other approaches, and more examples.
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2. Preliminaries

2.1. H∞ optimization. Let us introduce some basic function spaces and performance mea-
sures. Let L2(a, b) (or L2[a, b), L2[a, b], etc.) be the space of Lebesgue square integrable func-
tions on the interval (a, b), a < b. For a function f valued in Rn or Cn, its L2-norm is denoted
by

‖f‖2 =
{∫ b

a
|f(t)|2dt

}1/2

, (1)

where | · | denotes the Euclidean norm in Cn. Let H2 denote the space of Cn-valued functions
f that are analytic on the open right half plane C+ := {s : Res > 0} and satisfy

sup
x>0

∫ ∞

−∞
|f(x + jy)|2dy < ∞.

The H2-norm of a function f ∈ H2 is defined by

‖f‖2 := sup
x>0

{
1
2π

∫ ∞

−∞
|f(x + jy)|2dy

}1/2

. (2)

It is well known that Laplace transform gives an isometry between L2[0,∞) and H2.
The space H∞ denotes the Hardy space of functions analytic on C+ and bounded there. It

is a Banach space with norm

‖f‖∞ := sup
s∈C+

|f(s)|. (3)

An element f of H∞ admits nontangential limit to the imaginary axis almost everywhere,
which we denote by f(jω), ω ∈ R. Then the H∞-norm of f ∈ H∞ is equal to

‖f‖∞ = esssup
−∞<ω<∞

|f(jω)|. (4)

Now let G be the transfer function of a finite-dimensional, asymptotically stable linear
continuous-time system. Then G belongs to H∞, and its “size” is measured by the H∞-norm,
i.e., the supremum (or maximum) of the Bode magnitude plot as in (4).

The steady-state response of G against a sinusoid ejωt is given by G(jω)ejωt, and its magnitude
is bounded as

|G(jω)ejωt| ≤ sup
−∞<ω<∞

|G(jω)| · |ejωt| = ‖G‖∞.

In general, for u ∈ H2, it is known that

‖Gu‖2 ≤ ‖G‖∞ · ‖u‖2, (5)
and this bound is tight. Hence the H∞ norm gives the L2 energy induced-gain, and minimizing
it yields a system that works uniformly well for the whole frequency range1.

For this reason, it is recognized that the H∞-norm criterion is often superior to the H2-norm
criterion, where the H2-norm for a stable matrix transfer function is defined as

‖G‖2 :=
(

1
2π

∫ ∞

−∞
trace {G∗(jω)G(jω)}dt

)1/2

.

The H∞ norm has been used successfully in the control literature [7, 8, 11].

1However, it is to be noted that it is not possible to uniformly attenuate |G(jω)|. If we attenuate G(jω) for a
certain frequency range, it will yield an amplification at another range. Due to this effect, one usually introduce
a frequency weighting W (s), and minimize |W (jω)G(jω)|.
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2.2. Lifting, transfer functions, and frequency responses. The H∞ norm criterion is
naturally extended to sampled-data systems. The problem here is that such systems have two
time sets: continuous and discrete. Hence the overall system is not time-invariant in the classical
sense. This difficulty can be remedied by the now-standard technique called lifting [3, 4, 33, 34],
which converts a linear time-invariant continuous-time system to an infinite-dimensional discrete-
time system. It is then possible to naturally extend the notion of the H∞-norm to sampled-data
systems. To be more precise, let G denote the input/output operator of such a system. Then
its H∞-norm is defined to be the induced norm against all L2 inputs:

‖G‖∞ := sup
u∈L2,u �=0

‖Gu‖2

‖u‖2
. (6)

Via lifting, this norm is indeed equivalent to the maximum gain of the frequency response
operator of G as in (3).

We start by placing a continuous-time signal in a discrete-time framework. Take a continuous-
time signal w(t), and consider the following mapping L (with a suitable domain and codomain)
that maps w into a sequence of functions as

(Lw)[k] := w[k] := {w(kh + θ)}θ∈[0,h), k = 0, 1, 2, . . . . (7)

See Fig. 1. The operator L is called lifting.

0 h 2h 3h 4h

w(t)

k
0 h 0 h 0 h 0 h

1 2 30

Figure 1. Lifting: a continuous-time signal w(t) (left)

is converted to a function-valued discrete time signal (right)

This idea makes it possible to view time-invariant, or even periodically time-varying continuous-
time systems as linear, time-invariant discrete-time systems.

Using this operator, one can describe a linear, time-invariant continuous-time system with a
linear, time-invariant discrete-time system. Consider the following linear system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(8)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the state, input and output of this system,
respectively. Let us assume, e.g., u ∈ L2

loc[0,∞), the set of locally square-integrable functions
on [0,∞). The idea is that we view the continuous-time system (8) as one with discrete-timing
t = kh, k = 0, 1, 2, . . . such that it receives function-valued inputs at these instants and produces
function-valued outputs at these times also. Suppose that (8) is at state x(kh) at time t = kh.
Then

x(kh + h) = eAhx(kh) +
∫ h

0
eA(h−τ)Bu(kh + τ)dτ,

y(kh + θ) = CeAθx(kh) +
∫ θ

0
eA(θ−τ)Bu(kh + τ)dτ.
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where 0 ≤ θ < h denotes the intersample parameter. Lifting the input u(t) and the output y(t)
as per (7), we can rewrite these formulas as a lifted discrete-time system [4, 34]:

x[k + 1] = Ax[k] + Bu[k],

y[k] = Cx[k] + Du[k], k = 0, 1, 2, . . . ,

where x[k] = x(kh), u[k] = (Lu)[k], y[k] = (Ly)[k], and

A : Rn → Rn : x �→ eAhx,

B : L2[0, h) → Rn : u �→
∫ h

0
eA(h−τ)Bu(τ)dτ

C : Rn → L2[0, h) : x �→ CeAθx,

D : L2[0, h) → L2[0, h) : u �→
∫ θ

0
CeA(θ−τ)Bu(τ)dτ,

(9)

where θ ∈ [0, h) describes the intersample parameter. Observe that the operators A,B, C,D
above do not depend on time k, and hence system (9) is a time-invariant discrete-time system,
albeit with infinite-dimensional input and output spaces. Hence it is straightforward to connect
this system with a discrete-time controller (or a filter), and the obtained sampled-data system
is again a linear, time-invariant discrete-time system without sacrificing any intersampling
information. The resulting system can also be described by a 4-tuple of operators A,B, C,D,
and its transfer function (operator) of the lifted system is defined as

G(z) = D + C(zI −A)−1B
with such A,B, C,D. Note that for each fixed z ∈ C \ σ(eAh), (σ(eAh):= the set of eigenvalues
of eAh), G(z) is a linear operator acting on L2[0, h) into itself. The frequency response operator
is then defined as G(ejωh), and the gain at frequency ω is defined as

‖G(ejωh)‖ = sup
v∈L2[0,h)

v �=0

∥∥G (
ejωh

)
v
∥∥

‖v‖ .

The H∞ norm of G then becomes

‖G‖∞ = sup
ω∈[0,2π/h)

‖G(ejωh)‖,

which is known to be identical to the L2-induced norm given by (6) [4].

3. Signal reconstruction and sampling theorem

Consider the block diagram depicted in Fig. 2.

wc yc yd yK,d y
ΦK(z)F

Figure 2. Signal Reconstruction System

In this diagram, the signal wc ∈ L2 denotes the external analog signal to be reconstructed.
It is filtered by an analog filter (acquisition device) F , and then sampled by the sampler with
sampling period h. If f(t) denotes the impulse response of the analog filter F , then the discrete-
time signal yd[k] is easily seen to be given by
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yd[k] = (f ∗ wc)[k] = 〈f̌(· − kh)wc〉, (10)
where f̌(t) := f(−t) is the mirror image (with respect to time) of f , and 〈f, g〉 denotes the inner
product in L2. The obtained signal yd is then processed by a discrete-time filter K and then
the filtered discrete-time signal yK,d is converted back to an analog signal y via a reconstruction
device Φ. Denoting by φ the impulse response of Φ, the reconstructed y is given by

y(t) =
∞∑

k=−∞
yK,d[k]φ(t − kh). (11)

In the Shannon paradigm, the analog filter F is taken to be the ideal filter, and φ above is
the sinc function [44, 30]. As mentioned in the Introduction, this has several limitations. To
take care of this, one often employs an approximation of the ideal filter with respect to H2 norm
[10], and this unfortunately yields a sharp ringing effect in the frequency domain.

Unser and co-workers published series of papers of generalized sampling theorems where the
acquisition device F is not the ideal filter [28, 29, 30]. First define the subspace

Vf :=

{ ∞∑
k=−∞

α[k]f(t − kh) : {α[k]} ∈ 	2

}
(12)

generated by the translates of the impulse response of the acquisition filter, and the reconstruc-
tion space

Vφ :=

{ ∞∑
k=−∞

β[k]φ(t − kh) : {β[k]} ∈ 	2

}
(13)

generated by the translates of the reconstruction function φ. From the consistency requirement
[28], a key step in their procedure is the oblique projection of L2 onto Vφ perpendicular to Vf .
A precise comparison of this approach with our work is given in [42].

4. H∞ signal reconstruction problem

We are now ready to precisely state our signal reconstruction problem. The basic features
are the following:

• We allow a finite step preview for reconstruction.
• The acquisition device, sampling and hold elements are fixed.

Consider the block diagram Fig. 3.

F (s)

Fa(s) ↑L K(z) Hh/LSh P (s)

e−mhs

ecwc yc

yd

yK,d

yc(· − mh)

−

Figure 3. Error system of a sampled-data design filter

The external continuous-time signal wc ∈ L2 is first filtered, or band-limited (mildly but not
perfectly) by going through the analog low-pass filter F (s), which is linear and time-invariant,
and finite-dimensional. This F (s) is a rational function of s which is strictly proper (i.e., the
degree of the numerator polynomial is less than that of the denominator). As is well known, it
is represented by a linear, time-invariant system
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dx

dt
(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

where A,B,C are constant matrices of appropriate sizes, and F (s) = C(sI−A)−1B. Hence F is
not an ideal filter unlike the case of the Shannon paradigm, and is physically realizable through
the above state space model. The signal wc is the external signal that drives F and produces
the actual signal yc to be processed. That is, we assume that the original analog signals to be
sampled are in the following subspace of L2:

FL2 :=
{
yc ∈ L2 : yc = Fwc, wc ∈ L2

}
.

It is proved in [24] that the band-limited signal subspace

BL :=
{
yc ∈ L2 : supp ŷc ⊂ (−π/h, π/h)

}
,

is a proper subset of FL2, that is, BL � FL2. The filter F (s) is chosen based on the following
guidelines:

• a frequency distribution of input analog signals obtained by averaging or enclosing gains
of their Fourier transforms.

• a dynamical model of signal generator such as musical instruments.

The example in Section 6 gives a brief guideline on how to choose F (s) based on the envelope
of energy distributions of the signal. Note that when F is ideal, then the class we are dealing
with agrees with the ideal sampling theorem.

The produced signal yc is then sampled by ideal sampler Sh, filtered by an anti-aliasing
filter Fa(s), and becomes a discrete-time signal yd with sampling period h. This signal is then
upsampled by ↑L to allow for processing (interpolation) between the original sampling period
h. The digital filter K(z) processes this upsampled signal to produce yK,d. The signal yK,d then
goes through the zero-order hold Hh/L and becomes a continuous-time signal. It is then further
processed by an analog low-pass filter P (s) to become the final analog output yp.

In the upper part of the diagram, we allow m steps of delay for the analog signal yc and
obtain yc(t − mh). This is a setup for allowing a “preview” of yc for m samples by the proper
filter transfer function K(z). It is very effective compared to reconstruction without a preview.
This also takes care of certain processing delays caused by the processing filter. The integer m
is a design parameter that can be chosen by the designer. This is in marked contrast to the
conventional design methodologies: These methods usually allow a non-causal impulse response
for reconstruction, e.g., [32, 21, 22]. But in real implementation, one has to truncate it, and it
is often unclear how many steps one would need to obtain a desired accuracy. In the present
setup, one can prespecify an allowable step of delays (preview), and obtain an optimal design
under such a constraint.

Finally, the processed signal yp is compared with this delayed yc(t−mh) and subtracted from
it to obtain the error signal ec. The design objective is to make the error as small as possible.
Observe also that this design framework is formulated in the continuous-time domain in contrast
to the usual discrete-time setups.

We must specify a performance index to give a precise meaning to this problem. The following
L2 induced norm from wc to ec (or the sampled-data H∞ norm) is the one we take:

J := sup
wc∈L2,wc �=0

‖ec‖2

‖wc‖2
. (14)

We thus arrive at the following design problem:
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Problem 1. Let Tew denote the input/output operator from wc to ec(·) := yc(·)−uc(·−mh)
in Fig. 3. Given an attenuation level γ > 0, find, if one exists, a stable digital (discrete-time)
filter K(z) such that

J := ‖Tew‖∞ = sup
wc∈L2[0,∞)

‖Tewwc‖2

‖wc‖2
< γ. (15)

The performance index (15) intends to minimize the maximum error induced by an (unknown)
input wc that gives rise to the largest norm of ec among all inputs. This is made possible by the
H∞ design methodology. Note that the actual error is not known, but due to the min-max nature
of the problem, we can minimize the worst transmission error. Observe also that this setup allows
for a capability of minimizing continuous-time phase errors due to the continuous-time nature
of the performance index, as opposed to the conventional gain-phase design principles.

This min-max problem differs sharply from the orthogonal projection based methods. Also,
due to sampling, Tew is not even time-invariant (in continuous-time).

It is now known however that this problem is reducible to a linear time-invariant problem via
lifting; see Subsection 2.2; the problem is now solvable via now-standard H∞ control theory, see,
e.g., [4, 3] (see also [8] for standard treatments of H∞ control in the continuous-time setting).

The existence of e−mhs makes this an infinite-dimensional H∞ problem; see [19, 35, 39, 41],
etc. The simplest solution is to employ the so-called fast-sampling/fast-hold approximation,
which we will outline in the next section.

5. Solution via fast-sampling/fast-hold approximation

While Problem 1 is known to be reducible to a finite-dimensional problem [19, 23], it is not
necessarily appealing computationally. It is often more convenient to resort to an approximation
method. We employ the fast sample/hold approximation [18, 4, 35, 39]. This method approx-
imates continuous-time inputs and outputs via a sampler and hold that operate in the period
h/N for some positive integer N . The method usually works fairly well for N ∼ 5L, where
L is the upsampling ratio given in Section 4, and the convergence of such an approximation
is shown in [35, 39]. We show here the design procedure of K(z) by the fast sampling/hold
approximation.

The error system in Fig. 3 is a multirate system due to the upsampler ↑L. We first reduce
this system to a single-rate one. Introduce the discrete-time lifting, also known as the polyphase
decomposition [43], LL and its inverse L−1

L as

LL := (↓ L)
[

1 z · · · zL−1
]T

,

L−1
L :=

[
1 z−1 · · · z−L+1

]
(↑ L).

(16)

Then K(z)(↑L) can be rewritten by a lifted system as

K(z)(↑L) = L−1
L K̃(z),

K̃(z) := LLK(z)L−1
L

[
1 0 · · · 0

]T
.

The filter K̃(z) is an LTI (linear and time-invariant), single-input/L-output system. Define
H̃h := Hh/LL−1

L , and we obtain the following equality

Hh/LK(z)(↑ L)Sh = H̃hK̃(z)Sh.

Hence the multirate system in Fig. 3 is reduced to the single-rate system shown in Fig. 4.
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F (s)

Fa(s) K̃(z) H̃hSh P (s)

e−mhs

ecwc yc

yd

−

Figure 4. Reduced single-rate error system Tew

We then employ the fast sample/hold approximation for the error system Tew in Fig. 4. We
connect fast sample and hold devices Sh/N , Hh/N , and the discrete-time lifting LN with the
error system Tew as shown in Fig. 5.

w̃d wc ec ẽdSh/NTewHh/N

edwdL−1
N LN

Figure 5. Fast-sampling/Fast-hold (FSFH) transformation

We call this fast-sampling/fast-hold (FSFH) transformation and denote it by FSFH(Tew, h,N).
Before we give the design formula of FSFH(Tew, h,N), we introduce FSFH transformation for

continuous-time LTI systems. For brevity of notation, let us adopt the following shorthand no-
tation for continuous-time transfer function D+C(sI−A)−1B or discrete-time transfer function
D + C(zI − A)−1B:[

A B
C D

]
:=

{
D + C(sI − A)−1B, for continuous-time systems,
D + C(zI − A)−1B, for discrete-time systems.

Let c2d denote the step-invariant transformation [4], that is,

c2d
([

A B
C D

]
, h

)
:= Sh

[
A B
C D

]
Hh =

[
eAh

∫ h
0 eAtBdt

C D

]
.

Also, let lift denote the discrete-time lifting transformation [4], that is,

lift
([

A B
C D

]
, N

)
:= LN

[
A B
C D

]
L−1

N =⎡⎢⎢⎢⎢⎢⎢⎣
AN AN−1B AN−2B . . . B
C D 0 . . . 0

CA CB D
. . .

...
...

...
...

. . . 0
CAN−1 CAN−2B CAN−3B . . . D

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then, for continuous-time LTI system F , the FSFH transformation of F is given by

FSFH(F, h,N) := lift
(
c2d(F, h/N), N

)
.

By the FSFH transformation, the sampled-data error system Tew can be approximated by a
discrete-time LTI system as in the following theorem:

Theorem 1. Let N = Ll, where l is a positive integer, and define the discrete-time LTI
system TN as follows:

TN (z) = z−mFN (z) − PN (z)HK̃(z)SF̃N (z), (17)
where
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FN := FSFH(F, h,N), PN := FSFH(P, h,N), F̃N := FSFH(FFa, h,N),

H := diag {Il} ∈ RN×L, Il := [1, 1, . . . , 1]T ∈ Rl, S := [1, 0, . . . , 0] ∈ R1×N .

Then, for each fixed K̃ and for each ω ∈ [0, 2π/h), the frequency response

‖TN (ejωh)‖ → ‖Tew(ejωh)‖, (18)

as N → ∞, and this convergence is uniform with respect to ω ∈ [0, 2π/h). Furthermore, this
convergence is also uniform in K̃ if K̃ ranges over a compact set of filters.

The proof is almost the same as in [42, Theorem 1].
In view of the uniformity of convergence ‖TN‖∞ in K̃, our design problem (15) can be ap-

proximated by
‖TN‖∞ < γ.

This is a discrete-time H∞ optimization problem. To obtain a filter K̃(z) satisfying the above
inequality, we can adopt numerical softwares as MATLAB with robust control toolbox [20], by
the generalized plant representation depicted in Fig. 6, where w̃d = LNwd and ẽd = LNed.

[
z−mFN (z) −PN (z)H
SF̃N (z) 0

]

K̃(z)

w̃d ẽd

ydud

Figure 6. Discrete-time system for H∞ optimization

Once the optimal filter K̃(z) is obtained, one can obtain the interpolation filter K(z) by the
following formula:

K(z) =
[

1 z−1 · · · z−L+1
]
K̃(zL).

6. Design examples

Let us make a comparison with a usual linear phase filter—the equi-ripple FIR filter obtained
by Parks-McClellan method [43, 45] with 64 taps. Parks-McClellan method is widely used for
designing FIR filters for interpolation. We design the proposed filter K(z) with interpolation
ratio L = 4, sampling period h = 1, and delay step m = 4. The analog filters F (s), Fa(s), and
P (s) are given by

F (s) =
1

(Ts + 1)(0.1Ts + 1)
, T = 7.0187,

Fa(s) =
1

0.01s + 1
, P (s) =

1
0.05s + 1

.

Reflecting a typical energy distribution of orchestral music, the time constant T = 7.0187 is
taken to be equivalent to 1 kHz with sampling frequency 44.1 kHz. It therefore corresponds to
an energy distribution that decays by −20 dB per decade from 1 kHz and −40 dB per decade
from 10 kHz.
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Figure 7. Bode gain plot of the proposed filter (solid) and the equi-ripple filter (dash)

Fig. 7 shows the Bode gain plots of the proposed filter and the equi-ripple FIR filter with
64 taps. We can see that the equi-ripple filter has a sharp decay around the cutoff frequency
ω = π/4, while the filter obtained by the proposed method shows a rather mild decay.
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Figure 8. Response of the equi-ripple filter against a rectangular wave

Fig. 8 shows the response of the equi-ripple filter against a rectangular wave. It exhibits a very
sharp ringing effect. This is because the filter has a sharp cut-off characteristic, and inevitably
introduces the well-known Gibbs phenomenon due to the fact that the frequency components
beyond the pass-band are sharply truncated. In contrast, Fig. 9 shows the response of the filter
designed by the present method. It shows virtually no ringing.
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Figure 9. Response of a sampled-data design filter against a rectangular wave

Fig. 10 shows the frequency response gain of the sampled-data error system Tew. We design
filters by the proposed method for reconstruction delay m = 1, 2, 3, 4, . . . , and compare them
with the 64-tap equi-ripple filter. For all m, the H∞ norm of Tew does not change, but the
gain reduces for almost all frequencies as m increases. For m ≥ 4, the frequency response gain
remains unchanged. This indicates that m = 4 is optimal from the point of view that smaller
delay is better for signal processing. The equi-ripple filter exhibits large errors in the whole
frequency range as compared with the proposed filter when m ≥ 4. Note that the equi-ripple
filter has the reconstruction delay m = 16. These errors give an explanation of the ringing effect
in Fig. 8.
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Figure 10. Frequency response of error system Tew with sampled-data designed

filter (solid) and the equi-ripple filter (dash)

Fig. 11 shows the relation between the upsampling ratio L and the achieved performance
‖Tew‖∞. As illustrated in this figure, the performance improves as the upsampling ratio L
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increases, but for L ≥ 4, the performance is nearly unchanged. This figure suggests that L = 4
is nearly optimal since for large L leads to high sampling frequency Lπ (rad/sec).
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Figure 11. Upsampling ratio L versus performance ‖Tew‖∞

7. Concluding remarks

We have presented an overview on a new framework for digital signal processing. The funda-
mental philosophy is the emphasis on analog (continuous-time) performance with discrete-time
signal processing. This naturally leads to a technical difficulty because of the two different time-
sets involved: continuous and discrete. Leveraging sampled-data H∞ control theory, we have
presented computable procedures for designing optimal, stable, causal filters. These filters are
optimal with respect to a uniform analog performance measure. Our methodology is applicable
to a wide variety of theoretical and application problems in digital signal processing. We hope
that this article helps the readers familiarize themselves to this new approach and that it will
be be more widely used in the future.
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